Quotients of Banach spaces of cotype $q$
HTML articles powered by AMS MathViewer
- by Gilles Pisier
- Proc. Amer. Math. Soc. 85 (1982), 32-36
- DOI: https://doi.org/10.1090/S0002-9939-1982-0647892-8
- PDF | Request permission
Abstract:
Let $Z$ be a Banach space and let $X \subset Z$ be a $B$-convex subspace (equivalently, assume that $X$ does not contain $l_1^n$’s uniformly). Then every Bernoulli series $\Sigma _{n = 1}^\infty {\varepsilon _n}{z_n}$ which converges almost surely in the quotient $Z/X$ can be lifted to a Bernoulli series a.s. convergent in $Z$. As a corollary, if $Z$ is of cotype $q$, then $Z/X$ is also of cotype $q$. This extends a result of [4] concerning the particular case $Z = {L_1}$.References
- Jørgen Hoffmann-Jørgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159–186. MR 356155, DOI 10.4064/sm-52-2-159-186
- Jean-Pierre Kahane, Some random series of functions, D. C. Heath and Company Raytheon Education Company, Lexington, Mass., 1968. MR 0254888
- Bernard Maurey and Gilles Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), no. 1, 45–90 (French). MR 443015, DOI 10.4064/sm-58-1-45-90
- Gilles Pisier, Une nouvelle classe d’espaces de Banach vérifiant le théorème de Grothendieck, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 1, x, 69–90 (French, with English summary). MR 487403 —, Holomorphic semi-groups and the geometry of Banach spaces, Ann. of Math. (to appear).
- Haskell P. Rosenthal, On subspaces of $L^{p}$, Ann. of Math. (2) 97 (1973), 344–373. MR 312222, DOI 10.2307/1970850
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 32-36
- MSC: Primary 46B20; Secondary 28C20, 60B11
- DOI: https://doi.org/10.1090/S0002-9939-1982-0647892-8
- MathSciNet review: 647892