On boundary values of holomorphic functions on balls
HTML articles powered by AMS MathViewer
- by Josip Globevnik
- Proc. Amer. Math. Soc. 85 (1982), 61-64
- DOI: https://doi.org/10.1090/S0002-9939-1982-0647898-9
- PDF | Request permission
Abstract:
It is a result of Agranovski and Valski for which Nagel and Rudin, and Stout have given alternate proofs, that if $B$ is the open unit ball in ${{\mathbf {C}}^n}$ and if $f \in C(\partial B)$ has the property that for every complex line $\Lambda \subset {{\mathbf {C}}^n}$, $f\left | {(\Lambda \cap \partial B)} \right .$ has a continuous extension to $\Lambda \cap \bar B$ which is holomorphic in $\Lambda \cap B$, then $f$ has a continuous extension to $\bar B$ which is holomorphic in $B$. In the paper we give an easier, more geometric proof of this result and then prove the local version of this result.References
- M. L. Agranovskiĭ and R. È. Val′skiĭ, Maximality of invariant algebras of functions, Sibirsk. Mat. Ž. 12 (1971), 3–12 (Russian). MR 0285911
- Alexander Nagel and Walter Rudin, Moebius-invariant function spaces on balls and spheres, Duke Math. J. 43 (1976), no. 4, 841–865. MR 425178
- Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841 —, Function theory in the unit ball of ${{\mathbf {C}}^n}$, Die Grundlehren der Math. Wissenschaften, vol. 241, Springer-Verlag, New York and Berlin, 1980.
- Edgar Lee Stout, The boundary values of holomorphic functions of several complex variables, Duke Math. J. 44 (1977), no. 1, 105–108. MR 437800
- Edgar Lee Stout, Analytic continuation and boundary continuity of functions of several complex variables, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), no. 1-2, 63–74. MR 628129, DOI 10.1017/S0308210500032364
- B. V. Shabat, Vvedenie v kompleksnyĭ analiz, Izdat. “Nauka”, Moscow, 1969 (Russian). MR 0584932
- Barnet M. Weinstock, An approximation theorem for $\overline \partial$-closed forms of type $(n,\,n-1)$, Proc. Amer. Math. Soc. 26 (1970), 625–628. MR 265638, DOI 10.1090/S0002-9939-1970-0265638-4
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 61-64
- MSC: Primary 32A40
- DOI: https://doi.org/10.1090/S0002-9939-1982-0647898-9
- MathSciNet review: 647898