A NOTE ON HOLOMORPHIC IMBEDDINGS OF
THE CLASSICAL CARTAN DOMAINS
INTO THE UNIT BALL

YOSHIHISA KUBOTA

Abstract. Let D be a classical Cartan domain and let B be the unit ball. We find
the exact value of the supremum of the set of positive numbers ρ satisfying the
condition: ρB ⊂ f(D) for a certain holomorphic imbedding f: D → B.

1. This paper is concerned with the following problem: Let D be a bounded
homogeneous domain in C^n. By S(D) we denote the family of holomorphic
imbeddings f of D into the unit ball B_n in C^n such that f(D) ⊃ 0. For each f ∈ S(D)
we define

ρ_f = sup{ρ > 0: ρB_n ⊂ f(D)}

where ρB_n = {ρz: z ∈ B_n}. Further we define

ρ(D) = sup{ρ_f: f ∈ S(D)}.

Obviously ρ(D) is invariant under biholomorphic mappings. It is required to find
the exact value of ρ(D). Alexander [1] proved that for the unit polydisc U in C^n,
ρ(U) = n^{-1/2}.

In this paper we note that by appealing to the method of Alexander we are able to
find the values ρ(D) for the classical Cartan domains.

By a classical Cartan domain we understand a domain of one of the following
types:

R_1(r, s) = {Z = (z_{jk}): I - ZZ' > 0, where Z is an r × s matrix} (r ≤ s),
R_II(p) = {Z = (z_{jk}): I - ZZ' > 0, where Z is a symmetric matrix of order p},
R_III(q) = {Z = (z_{jk}): I - ZZ' > 0, where Z is a skew-symmetric matrix of order
q},
R_IV(n) = {z = (z_1, ..., z_n): 1 + |zz'|^2 - 2zz' > 0, 1 - |zz'| > 0}.

Here I is the identity matrix and Z denotes the conjugate matrix of Z and Z' the
transposed matrix of Z. The complex dimensions of these four domains are rs,
p(p + 1)/2, q(q - 1)/2, n, respectively.

We shall prove the following theorems.

Received by the editors April 16, 1980.
1980 Mathematics Subject Classification. Primary 32H99.
Key words and phrases. Classical Cartan domain, holomorphic imbedding, bounded homogeneous
domain, biholomorphic mapping.

©1982 American Mathematical Society
0002-9939/82/0000-1096/$02.00

65
Theorem 1.

(1.1) \(\rho(R_1(r, s)) = r^{-1/2} \),

(1.2) \(\rho(R_{11}(p)) = p^{-1/2} \),

(1.3) \(\rho(R_{11}(q)) = [q/2]^{-1/2} \),

where \([q/2]\) denotes the integral part of \(q/2\),

(1.4) \(\rho(R_{1v}(n)) = 2^{-1/2} \).

Theorem 2. If \(D_1, \ldots, D_m \) are classical Cartan domains, then

\[
\rho(D_1 \times \cdots \times D_m) = \left[\rho(D_1)^{-2} + \cdots + \rho(D_m)^{-2} \right]^{-1/2}.
\]

2. We begin with two lemmas. By applying the method of Alexander [1] we are able to prove the following lemma. For the sake of completeness we give a proof.

Lemma 1. Let \(D \) be a bounded homogeneous domain in \(\mathbb{C}^n \) satisfying the conditions:

(1) \[
\{ z = (z_1, \ldots, z_n) : |z_{a_j}| < 1 \text{ for } j = 1, \ldots, m \text{ and } z_a = 0 \text{ for the other } a's \} \subset D,
\]

where \(1 \leq a_1 < \cdots < a_m \leq n \),

(2) for each \(j (1 \leq j \leq m) \)

\[
\{ z = (z_1, \ldots, z_n) : |z_{a_j}| = 1 \text{ and } z_a = 0 \text{ for the other } a's \} \subset \partial D.
\]

If \(f \in \mathcal{S}(D) \) and \(\rho B_n \subset f(D) \), then \(\rho \leq m^{-1/2} \).

Proof. Let \(f = (f_1, \ldots, f_n) \) be a mapping in \(\mathcal{S}(D) \). Since \(D \) is homogeneous, we may assume that \(f(0) = 0 \). We set

\[
g_a(\zeta_1, \ldots, \zeta_m) = f_a(0, \ldots, \zeta_1, \ldots, \zeta_m, 0) \quad (\alpha = 1, \ldots, n),
\]

where \(\zeta_j \) is in the \(a_j \)th position in the right-hand side. The function \(g_a \) is holomorphic in the polydisc \(U = \{ \zeta = (\zeta_1, \ldots, \zeta_m) : |\zeta_j| < 1, j = 1, \ldots, m \} \). Hence \(g_a \) admits an expansion

\[
g_a(\zeta) = \sum \alpha \sum_{\nu_1, \ldots, \nu_m} a_{\alpha}^{(\nu_1, \ldots, \nu_m)} \zeta_{\nu_1} \cdots \zeta_{\nu_m}, \quad a_{0, \ldots, 0}^{(\alpha)} = 0,
\]

which converges uniformly on compact subsets of \(U \). Firstly, by condition (1) we have

\[
\sum_{\alpha=1}^{n} \left(\sum_{\nu_1, \ldots, \nu_m} |a_{\alpha}^{(\nu_1, \ldots, \nu_m)}|^2 \right) = \lim_{r \to 1} \frac{1}{(2 \pi)^m} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \left\{ \sum_{\alpha=1}^{n} \left| g_a(re^{i \theta_1}, \ldots, re^{i \theta_m}) \right|^2 \right\} d \theta_1 \cdots d \theta_m \leq 1.
\]

On the other hand, by condition (2), we have

\[
\rho^2 \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \left\{ \sum_{\alpha=1}^{n} |g_a(0, \ldots, e^{i \theta_j}, \ldots, 0)|^2 \right\} d \theta_j = \sum_{\alpha=1}^{n} \left(\sum |a_{0, \ldots, 0}^{(\alpha)}|^2 \right),
\]
where \(g_n(0, \ldots, re^{i\theta}, \ldots, 0) \) is the radial limit
\[
\lim_{r \to 1} g_n(0, \ldots, re^{i\theta}, \ldots, 0)
\]
which exists a.e. on \((\theta_j: 0 < \theta_j < 2\pi) \). Therefore we obtain \(m_\rho^2 \leq 1 \).

Next, instead of \(R_{11}(p) \) we consider the following modified domain:
\[
\hat{R}_{11}(p) = \left\{ Z = (z_{jk}): z_{jk} = \sqrt{2} x_{jk} (j \neq k), z_{jj} = x_{jj}, \text{where } X = (x_{jk}) \in R_{11}(p) \right\}.
\]
Further, instead of \(R_{11}(n) \) we consider the following domain:
\[
R_{11}^*(n) = \left\{ z = (z_1, \ldots, z_n): 1 + \left| z_1 z_2 + \frac{1}{2} (z_3^2 + \cdots + z_n^2) \right|^2 - \left(|z_1|^2 + \cdots + |z_n|^2 \right) > 0, 1 - |z_1 z_2 + \frac{1}{2} (z_3^2 + \cdots + z_n^2)| > 0 \right\}.
\]
The domain \(R_{11}^*(n) \) is obtained from \(R_{11}(n) \) by the biholomorphic mapping
\[
\varphi = (\varphi_1, \ldots, \varphi_n), \quad \varphi(z) = z_1 + iz_2, \quad \varphi_2(z) = z_1 - iz_2, \quad \varphi_n(z) = \sqrt{2} z_n (n = 3, \ldots, n).
\]
We have the following:

Lemma 2.
\[
B_n \subset R_1(r, s) \subset \sqrt{r} B_n \quad (n = rs),
\]
\[
B_n \subset \hat{R}_{11}(p) \subset \sqrt{p} B_n \quad (n = p(p + 1)/2),
\]
\[
B_n \subset R_{111}(q) \subset \sqrt{[q/2]} B_n \quad (n = q(q - 1)/2),
\]
\[
B_n \subset R_{11}^*(n) \subset \sqrt{2} B_n.
\]

Proof. In [4] we showed that
\[
R_1(r, s) \subset \sqrt{r} B_n, \quad \hat{R}_{11}(p) \subset \sqrt{p} B_n, \quad R_{111}(q) \subset \sqrt{[q/2]} B_n.
\]
To show that \(B_n \subset R_1(r, s) \), let \(\lambda_1, \ldots, \lambda_r \) be the characteristic roots of \(ZZ' \), where \(Z \) is an \(r \times s \) matrix in \(B_n \). Then we have
\[
\lambda_1 + \cdots + \lambda_r = \text{trace } ZZ' = \sum_{j=1}^r \sum_{k=1}^s |z_{jk}|^2 < 1
\]
and \(\lambda_j \geq 0 (j = 1, \ldots, r) \); therefore \(\lambda_j < 1 \). This implies that \(B_n \subset R_1(r, s) \).

Similarly we obtain \(B_n \subset \hat{R}_{11}(p) \). If \(Z \) is a skew-symmetric matrix, the characteristic roots of \(ZZ' \) are double roots or equal to 0 [2]. Hence we have \(B_n \subset R_{111}(q) \). The last relation \(B_n \subset R_{11}^*(n) \subset \sqrt{2} B_n \) is obvious.

3. We now turn to the proof of theorems. We consider an \(r \times s \) matrix \(Z \) such that
\[
Z = \begin{pmatrix}
\xi_1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & \xi_2 & 0 & \cdots & 0 & \cdots & 0 \\
& & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \cdots & \xi_r & 0 & \cdots & 0
\end{pmatrix}
\]
If \(|\xi_j| < 1 (j = 1, \ldots, r) \), then \(Z \) belongs to \(R_1(r, s) \). Further if \(|\xi_k| = 1 \) and \(\xi_j = 0 \) \((j \neq k) \), then \(Z \) belongs to \(\partial R_1(r, s) \). Therefore (1.1) is an immediate consequence of Lemmas 1 and 2. Similarly we obtain \(R_{11}(p) = p^{-1/2} \).
Considering a skew-symmetric matrix Z of order q such that

$$Z = \left(\begin{array}{cc} 0 & \xi_1 \\ -\xi_1 & 0 \end{array} \right) + \cdots + \left(\begin{array}{cc} 0 & \xi_m \\ -\xi_m & 0 \end{array} \right) \quad (q = 2m)$$

or

$$Z = \left(\begin{array}{cc} 0 & \xi_1 \\ -\xi_1 & 0 \end{array} \right) + \cdots + \left(\begin{array}{cc} 0 & \xi_m \\ -\xi_m & 0 \end{array} \right) + 0 \quad (q = 2m + 1),$$

we obtain (1.3). To prove (1.4) we consider a point z in \mathbb{C}^n of the form $z = (\xi_1, \xi_2, 0, \ldots, 0)$, Then we have

$$\rho(R_v^*(n)) = 2^{-1/2}.$$

This completes the proof of Theorem 1.

Theorem 2 follows from Lemmas 1, 2 and the following fact: if D_1, \ldots, D_m are domains satisfying

$$B_n \subset D_v \subset \rho_v B_{n_v} \quad (v = 1, \ldots, m),$$

then

$$B_n \subset D_1 \times \cdots \times D_m \subset \sqrt{\rho_1^2 + \cdots + \rho_m^2} B_n \quad (n = n_1 + \cdots + n_m).$$

References

Department of Mathematics, Tokyo Gakugei University, Koganei-shi, Tokyo 184, Japan.