COLLECTIONWISE NORMALITY WITHOUT LARGE CARDINALS

FRANKLIN D. TALL

ABSTRACT. It was previously known to be consistent relative to a strongly compact
cardinal that locally compact perfectly normal spaces must be collectionwise normal.
We obtain the same result merely by adjoining \(\aleph_2 \) random reals to a model of
\(V = L \).

It is easy to prove that locally compact perfectly normal spaces are collectionwise
normal if one assumes Fisher's Axiom, since they are first countable and so Nyikos'
method [N] applies. That axiom requires large cardinals but we shall prove the
consistency of this result without assuming anything beyond the consistency of ZFC.
The independence is well known: the locally compact modification of the bubble
space on a set of reals of power \(\aleph_1 \) or a (special) Aronszajn tree suffice under
Martin's Axiom plus \(2^{\aleph_0} > \aleph_1 \). Our model is the result of adjoining \(\aleph_2 \) random reals
to a model of \(V = L \); the proof follows easily from several powerful theorems in the
literature.

Lemma 1. Assume \(\Theta \) for stationary systems for all regular cardinals \(\kappa \geq \aleph_2 \). Assume
\(2^{\aleph_0} \leq \aleph_2 \) and, for all \(\lambda \geq \aleph_2 \), \(2^\lambda = \lambda^+ \). Then

1. if \(X \) is normal and \(\aleph_1 \)-collectionwise Hausdorff, any closed discrete set of points of
character \(\leq \aleph_1 \) is separated;

2. if \(X \) is normal, \(\kappa \geq \aleph_2 \) is regular, and \(X \) is \(\lambda \)-collectionwise Hausdorff for each
\(\lambda < \kappa \), then any closed discrete set of cardinality \(\kappa \) whose points have character \(\leq \kappa \) is
separated;

3. if \(X \) is normal, \(\kappa \) is singular, and \(X \) is \(\lambda \)-collectionwise Hausdorff for each \(\lambda < \kappa \),
then any closed discrete set of cardinality \(\kappa \) such that the sup of the character of its
points is less than \(\kappa \) is separated.

Proof. This follows easily from an analysis of Fleissner's proof in [F1].

Lemma 2. (a) Under the same hypotheses as Lemma 1, if \(X \) is a locally compact
normal space which is collectionwise normal with respect to collections of \(\leq \aleph_1 \) compact
sets, then \(X \) is collectionwise normal with respect to arbitrary collections of compact sets.
(b) If every normal space of character $\leq \aleph_1$ is \aleph_1-collectionwise Hausdorff, then every locally compact normal space is collectionwise normal with respect to collections of $\leq \aleph_1$ compact sets.

Proof. Again, this follows easily from an analysis of Watson’s proof in [W], in view of Lemma 1.

Lemma 3 (Gruenhage [G]). If X is locally compact, perfectly normal, and collectionwise normal with respect to compact sets, then X is the disjoint sum of subspaces, each of which is the union of $\leq \aleph_1$ compact sets.

Lemma 4 (Carlson [C], [F2]). Adjoin \aleph_2 random reals to a model of CH. Then the product measure on $\{0,1\}^{\aleph_1}$ can be extended by any \aleph_1 sets.

We can now prove

Theorem. Adjoin \aleph_2 random reals to a model of $V = L$. Then every locally compact perfectly normal space is collectionwise normal.

Proof. By Lemma 4 and Nyikos’ method [N], normal spaces of character $\leq \aleph_1$ are \aleph_1-collectionwise Hausdorff. Since \Diamond for stationary systems holds for regular $\kappa \geq \aleph_2$ in $L[A]$, $A \subseteq \aleph_2$, by Lemmas 1 and 2 we therefore have locally compact perfectly normal spaces are collectionwise normal with respect to compact sets since their character is $\leq \aleph_1$. Thus Lemma 3 applies, so to get collectionwise normality in general, it suffices to consider a locally compact perfectly normal space $X = \bigcup_{\alpha<\omega_1} F_{\alpha}$, F_{α} compact, and hence discrete collections of closed sets $K = \bigcup_{\alpha<\omega_1} (K \cap F_{\alpha})$. Note that such collections have cardinality at most \aleph_1, else some F_{α} would admit a large discrete collection, contradicting compactness. Further note that each $K \cap F_{\alpha}$ as a set has countable character in X, since it is a compact subset of a locally compact perfectly normal space. Again apply Nyikos and Carlson, treating the $K \cap F_{\alpha}$’s as points, to complete the proof. More precisely, since the $K \cap F_{\alpha}$’s have character $\leq \aleph_1$ and there are only \aleph_1 of them, there are only \aleph_1 sets by which the measure on $\{0,1\}^{\aleph_1}$ has to be extended. (Note that under merely $V = L$ there is no reason to believe the K’s can be separated from each other, since we have no control over their character as points.)

Remark. We do not know if our results follow from $V = L$ or are consistent with CH. Their denial is consistent with GCH by Devlin-Shelah [DS]. The question of whether “perfectly” can be eliminated, even with large cardinals, seems to be difficult and important. There are some straightforward generalizations of our theorem, for example 2^{\aleph_0} can be anything reasonable, but at present these do not seem worth stating.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, ONTARIO M5S 1A1, CANADA.