A Plücker equation for curves in real projective space
HTML articles powered by AMS MathViewer
- by J. R. Quine
- Proc. Amer. Math. Soc. 85 (1982), 103-107
- DOI: https://doi.org/10.1090/S0002-9939-1982-0647908-9
- PDF | Request permission
Abstract:
For smooth closed curves in real projective space we write an equation relating the Plücker characteristics, various winding numbers, and a new characteristic involving pairs of points on the line at infinity. This theorem is a generalization of the Umlaufsatz and also relates directly to Plücker’s equations for algebraic curves.References
- Michael Cowen and Phillip Griffiths, Holomorphic curves and metrics of negative curvature, J. Analyse Math. 29 (1976), 93–153. MR 508156, DOI 10.1007/BF02789977
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Heinz Hopf, Über die Drehung der Tangenten und Sehnen ebener Kurven, Compositio Math. 2 (1935), 50–62 (German). MR 1556906
- W. F. Pohl, Singularities in the differential geometry of submanifolds, Proceedings of Liverpool Singularities Symposium, II (1969/1970), Lecture Notes in Math., Vol. 209, Springer, Berlin, 1971, pp. 104–113. MR 0346819
- J. R. Quine, Plücker relations for $p(e^{i\theta })$, Math. Scand. 44 (1979), no. 2, 289–294. MR 555220, DOI 10.7146/math.scand.a-11811
- J. R. Quine, Plücker equations for curves, Amer. Math. Monthly 88 (1981), no. 1, 21–29. MR 619414, DOI 10.2307/2320706
- J. R. Quine and Paul Yang, A noncompact version of Plücker’s second equation, Duke Math. J. 47 (1980), no. 1, 127–134. MR 563370, DOI 10.1215/S0012-7094-80-04709-2
- Shigeo Sasaki, The minimum number of points of inflexion of closed curves in the projective plane, Tohoku Math. J. (2) 9 (1957), 113–117. MR 99700, DOI 10.2748/tmj/1178244837
- C. J. Titus, A theory of normal curves and some applications, Pacific J. Math. 10 (1960), 1083–1096. MR 114189, DOI 10.2140/pjm.1960.10.1083
- Hassler Whitney, On regular closed curves in the plane, Compositio Math. 4 (1937), 276–284. MR 1556973
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 103-107
- MSC: Primary 14H20; Secondary 14G30, 57R99
- DOI: https://doi.org/10.1090/S0002-9939-1982-0647908-9
- MathSciNet review: 647908