NOMOGRAPHIC FUNCTIONS ARE NOWHERE DENSE

R. CREIGHTON BUCK

ABSTRACT. A function f of n variables is nomographic if it can be represented in the format

$$f(x_1, \ldots, x_n) = h(\phi_1(x_1) + \cdots + \phi_n(x_n))$$

where the ϕ_i and h are continuous. Every continuous function of n variables has a representation as a sum of not more than $2n + 1$ nomographic functions [9]. This paper gives a constructive proof that the nomographic functions form a nowhere dense subset of the space $C[I^n]$.

Let $I = [-1,1]$ and $I^k = I \times I \times \cdots \times I$. The class \mathcal{N}^k of nomographic functions of k variables are those that on I^k have a representation in the special format

$$(1) \quad f(x_1, x_2, \ldots, x_k) = h(\phi_1(x_1) + \phi_2(x_2) + \cdots + \phi_k(x_k))$$

where the ϕ_k and h are real-valued continuous functions on $-\infty < t < \infty$. Interest in \mathcal{N}^k revived when Kolmogorov used these functions in 1957 to settle Hilbert's 13th problem by showing that every continuous function on I^k could be written as the sum of $2k + 1$ functions from \mathcal{N}^k. (See [9, 10].)

Formula (1) makes it natural to conjecture that \mathcal{N}^k is a sparse subset of the space $C[I^k]$ of all real continuous functions on I^k, with the usual norm $\|g\| = \max|g(p)|$, as suggested in [2]. This does not conflict with the Kolmogorov result; for example, $[0,1]$ is the algebraic sum of two copies of a nowhere dense subset E. That \mathcal{N}^k should be sparse is more evident when smoothness is required. If $f \in \mathcal{N}^2$ has component functions h, ϕ_1, and ϕ_2 which are in C''', then f must satisfy a third order PDE that is characteristic for \mathcal{N}^2. (See [4].) In addition, nowhere denseness is known to follow smoothness in a number of other studies of superposition classes. (See [6, 7, 8].) In the present paper, we present a direct constructive proof that \mathcal{N}^k is nowhere dense in $C[I^k]$, with no differentiability restrictions on h or ϕ_j; indeed, we do not require that h be continuous. We remark that \mathcal{N}^2 is not uniformly closed. (See [1 or 3].)

We prove a more general theorem, and then verify later that the requisite property is shared by the class \mathcal{N}^k.

Let D be a compact set in R^n with nonvoid interior, and $C[D]$ be the Banach space of real-valued continuous functions on D, with the uniform convergence norm $\|F\|_D = \max_{p \in D}|F(p)|$. Let \mathcal{F} be a subset of $C[D]$ which we will prove is nowhere dense. The key requirement we need is the existence of special functions in $C[D]$ that fail to belong locally to the closure of \mathcal{F}.
THEOREM 1. Suppose that there is a point p_0 interior to D such that for any real c, there exists $g \in C[D]$ with $g(p_0) = c$ such that for every compact neighborhood V of p_0

\[\inf_{f \in \mathcal{F}} \|f - g\|_V > 0. \]

Then, \mathcal{F} is nowhere dense in $C[D]$.

PROOF. Let U be any nonempty open set in $C[D]$; we will produce another nonempty open set $U_1 \subset U$ disjoint from \mathcal{F}. Choose $G_0 \in U$ and $r > 0$ such that $\|G - G_0\| < r$ implies $G \in U$. Let $c = G_0(p_0)$, and then use the hypothesis to select a special function g in $C[D]$ obeying (2). Let B be a closed ball in D, centered at p_0, such that

\[|G_0(p) - c| < \frac{\varepsilon}{3} \quad \text{for all } p \in B, \]

and choose a smaller ball B_0, also centered at p_0, such that

\[|g(p) - c| < \frac{\varepsilon}{3}, \quad p \in B_0. \]

Construct a continuous function G_1 defined on B such that $G_1(p) = G_0(p)$ for p on the boundary of B, $G_1(p) = g(p)$ on B_0, and obeying $|G_1(p) - c| < \frac{\varepsilon}{3}$ on B. Then, extend G_1 to all of D by setting it equal to G_0 off B. Observe that G_1 is in $C[D]$ and agrees with G_0 except on a small neighborhood of p_0 where it has been modified to agree with the special function g locally. If $p \in B$, we have

\[|G_1(p) - G_0(p)| \leq |G_1(p) - c| + |c - G_0(p)| \leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} < r. \]

Accordingly, $\|G_1 - G_0\|_D < r$ and $G_1 \in U_1$.

By (2), choose $\delta > 0$ so that $\|f - g\|_{B_0} > \delta$ for all $f \in \mathcal{F}$, and take $U_1 = \{F \in U$ with $\|F - G_1\|_D < \frac{\delta}{2}\}$. Then, if $F \in U_1$ and $f \in \mathcal{F}$,

\[\|f - F\|_D \geq \|f - g\|_{B_0} - \|F - G_1\|_{B_0} \geq \delta - \frac{\delta}{2} = \frac{\delta}{2}. \]

Thus, \mathcal{F} is nowhere dense in $C[D]$.

We now use this to show that \mathcal{N}^2 is nowhere dense in $C[I^2]$. Take $p_0 = (0,0)$; since \mathcal{N}^2 is closed under addition of constants, we do not need to retain the condition in (2) that $g(p_0) = c$. For any $r > 0$, let V_r be the compact neighborhood of p_0 consisting of those (x, y) with $|x| \leq r$, $|y| \leq r$.

THEOREM 2. The special function $g(x, y) = x^2 + xy + y^2 + 2x + y$ has the property that

\[r^2 > \inf_{f \in \mathcal{N}^2} \|f - g\|_{V_r} > r^3/10 \]

for all $r < .01$.

We begin the proof of this by quoting one of the characterization theorems for nomographic functions obtained in [3], modifying it to match the notation and needs of the present paper. (See Theorem 12, p. 293.)
Let g be of class C' on the set V_r, and suppose that g_x and g_y are bounded below by $\sigma > 0$. Let $\varepsilon < r\sigma/12$ and suppose that the distance in the space $C[V_r]$ between g and the set \mathcal{N}^2 is less than ε. Then, one of the following systems of inequalities must be solvable.

(i) For some choice of x_i in $[-r,r]$,

\[
|g(x_1, -r) - g(-r, 0)| < 2\varepsilon,
\]

\[
|g(x_2, -r) - g(-r, r)| < 2\varepsilon,
\]

\[
|g(x_1, r) - g(x_2, 0)| < 2\varepsilon.
\]

(ii) For some choice of y_i in $[-r, r]$,

\[
|g(-r, y_1) - g(0, -r)| < 2\varepsilon,
\]

\[
|g(-r, y_2) - g(r, -r)| < 2\varepsilon,
\]

\[
|g(r, y_1) - g(0, y_2)| < 2\varepsilon.
\]

If we apply this general result to the special function $g(x, y)$ in Theorem 2, and assume that the distance from g to \mathcal{N}^2 is less than ε, then after putting $x_i = rs_i$ and $y_i = rt_i$, we have either there are s_i with $|s_i| \leq 1$ and

\[
|2s_1 + 1 + (s_1^2 - s_1)r| < 2\varepsilon/r,
\]

\[
|2s_2 + (s_2^2 - s_2)r| < 2\varepsilon/r,
\]

\[
|2s_1 - 2s_2 + 1 + (s_1^2 - s_2^2 + s_1 + 1)r| < 2\varepsilon/r;
\]

or there exist t_i with $|t_i| \leq 1$ such that

\[
|t_1 - 1 + (t_1^2 - t_1)r| < 2\varepsilon/r,
\]

\[
|t_2 - 3 + (t_2^2 - t_2)r| < 2\varepsilon/r,
\]

\[
|t_1 - t_2 + 2 + (t_1^2 - t_1 + 1)t_1| < 2\varepsilon/r.
\]

We now show that if $\varepsilon = r^3/10$ and $r < .01$, then neither (9) nor (10) can be satisfied. For (10) this is immediate, since the second inequality in (10) implies that $|t_2 | < 2r + r^2/5$, contradicting $|t_1| \leq 1$. To show that (9) also fails, set

\[
A = 2s_1 + 1 + (s_1^2 - s_1)r, \quad B = 2s_2 + (s_2^2 - s_2)r,
\]

\[
C = 2s_1 - 2s_2 + 1 + (s_1^2 - s_2^2 + s_1 + 1)r,
\]

so that the inequalities in (10) become $|A| < r^2/5$, $|B| < r^2/5$, $|C| < r^2/5$. The first of these implies $|2s_1 + 1| \leq 2r + r^2/5 < 3r$, and hence that $s_1 = -\frac{1}{2} + ar$ where $|a| \leq \frac{3}{2}$. Substituting this into A, we have $|2a + \frac{2}{4}| \leq 3r + \frac{r}{5} + \frac{2}{4}r^2 < 4r$ and conclude that $s_1 = -\frac{1}{2} - \frac{3}{8}r + br$ where $|b| \leq 2$. In a similar way, $|B| < r^2/5$ implies that $s_2 = cr^2$ where $|c| \leq 1$. Finally, since $C = A - B + (2s_1 - 1 - s_2)r$, we find $|2s_1 - 1 - s_2| \leq \frac{3}{5}r$ and using the values obtained for s_1 and s_2, we finally obtain

\[
\left|\frac{3}{4} + (2b - c)r\right| \leq \frac{3}{5}
\]

which clearly cannot hold if $r < .01$.

To obtain the left side of (6), we merely observe that the special function $f_0(x, y) = \left(x + \frac{1}{2}y + 1\right)^2 - 1$ belongs to \mathcal{N}^2 and obeys $\|f_0 - g\|_{V_r} < r^2$.

Having proved Theorem 2, we invoke Theorem 1 and obtain

COROLLARY. \(N^2 \text{ is a nowhere dense subset of } C[I^2]. \)

To show now that this is also true of the class \(N^k \) in the space \(C[I^k] \), we prove that one does not obtain a better nomographic approximation to the special function \(g \) given in Theorem 2 by using nomographic functions of \(k \) variables for any \(k > 2 \).

THEOREM 3. If \(g \) is any continuous function of \((x_1, x_2)\) then

\[
\inf_{f \in N^k} \|f - g\|_{I^k} = \inf_{f^* \in N^2} \|f^* - g\|_{I^2}.
\]

PROOF. Let \(d \) be the distance in \(C[I^k] \) from \(g \) to \(N^k \). Given \(\delta > 0 \), choose \(f_0 \in N^k \) so that

\[
d_0 = \|f_0 - g\|_{I^k} < d + \delta.
\]

Choose \(\bar{x} = (\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_k) \) in \(I^k \) so that

\[
d_0 = \|f_0(\bar{x}) - g(\bar{x})\| = |h(\phi_1(\bar{x}_1) + \phi_2(\bar{x}_2) + \cdots + \phi_k(\bar{x}_k)) - g(\bar{x})|.
\]

Define a function \(\psi \) on \(I \) by

\[
\psi(s) = \phi_2(s) + \phi_3(\bar{x}_3) + \cdots + \phi_k(\bar{x}_k),
\]

and then set \(f^*(x_1, x_2) = h(\phi_1(x_1) + \psi(x_2)) \). It is then clear that

\[
\|f^*(x_1, x_2) - g(x_1, x_2)\| = d_0
\]

while for any \((x_1, x_2)\) in \(I^2 \),

\[
\|f^*(x_1, x_2) - g(x_1, x_2)\| = |f_0(x_1, x_2, \bar{x}_3, \ldots, \bar{x}_k) - g(x_1, x_2)| \leq \|f_0 - g\|_{I^k}.
\]

Accordingly, \(\|f^* - g\|_{I^2} = \|f_0 - g\|_{I^k} < d + \delta \), holding for every \(\delta > 0 \). This proves one half of (11); the rest follows since \(N^2 \) is part of \(N^k \).

While five copies of \(N^2 \) are enough to give \(C[I^2] \) as their algebraic sum, it is known that four will not suffice. (See [5].) It would be of interest to know if the sum of four copies of \(N^2 \) is perhaps also nowhere dense in \(C[I^2] \). The argument we have used here will not work since the special function \(g(x, y) \) used in Theorem 2 in fact is already a member of \(N^2 + N^2 \). Indeed,

\[
g(x, y) = \exp(\log(x + 2) + \log(y + 3)) + (x^2 - x + y^2 - y - 6).
\]

REFERENCES

1. V. I. Arnold, *On the representability of functions of two variables in the form \(\chi(\phi(x) + \psi(y)) \)*, Uspehi Mat. Nauk 12 (1957), 119–121. (Russian)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706