Coefficients and normal functions
HTML articles powered by AMS MathViewer
- by Peter Lappan
- Proc. Amer. Math. Soc. 85 (1982), 335-341
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656097-6
- PDF | Request permission
Abstract:
Let $f(z) = \sum {a_n}{z^n}$ be an analytic function in the unit disc. It is proved that if $\{ {a_n}\}$ is a bounded monotone sequence of real numbers, or if $\sum |{a_n} - {a_{n - 1}}| < \infty$ and ${a_n} \nrightarrow 0$, then $f(z)$ is a normal function. Examples are given to show that these results are delicate.References
- J. M. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12–37. MR 361090
- F. Bagemihl and W. Seidel, Sequential and continuous limits of meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A I 280 (1960), 17. MR 0121488
- Douglas Campbell and George Piranian, Problems on the normality of holomorphic functions, Houston J. Math. 8 (1982), no. 1, 1–13. MR 666140
- Olli Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47–65. MR 87746, DOI 10.1007/BF02392392
- J. H. Mathews, Coefficients of uniformly normal-Bloch functions, Yokohama Math. J. 21 (1973), 29–31. MR 325975 J. J. Neitzke, Coefficients of Bloch functions, Ph.D. Dissertation, Michigan State Univ., 1980.
- L. R. Sons and D. M. Campbell, Hadamard gap series and normal functions, Bull. London Math. Soc. 12 (1980), no. 2, 115–118. MR 571732, DOI 10.1112/blms/12.2.115
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 335-341
- MSC: Primary 30D45
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656097-6
- MathSciNet review: 656097