Injectivity of quasi-isometric mappings of balls
HTML articles powered by AMS MathViewer
- by Julian Gevirtz
- Proc. Amer. Math. Soc. 85 (1982), 345-349
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656099-X
- PDF | Request permission
Abstract:
Let $X$ and $Y$ be real Banach spaces. A mapping $f$ of an open subset $R$ of $X$ into $Y$ is said to be $(m,M)$-isometric if it is a local homeomorphism for which $M \geqslant {D^ + }f(x)$ and $m \leqslant {D^ - }f(x)$ for all $x$ in $R$, where ${D^ + }f(x)$ and ${D^ - }f(x)$ are, respectively, the upper and lower limits of $|f(y) - f(x)|/|y - x|$ as $y \to x$. We show that if $R$ is a ball then all $(m,M)$isometric mappings of $R$ are injective provided that $M/m < 1.114 \ldots$ and we also give some numerical improvements of similar results of F. John for the special case that $X$ is a Hilbert space.References
- F. John, Quasi-isometric mappings, Seminari 1962/63 Anal. Alg. Geom. e Topol., Vol. 2, Ist. Naz. Alta Mat., Ediz. Cremonese, Rome, 1965, pp. 462–473. MR 0190905
- Fritz John, On quasi-isometric mappings. I, Comm. Pure Appl. Math. 21 (1968), 77–110. MR 222666, DOI 10.1002/cpa.3160210107
- Fritz John, On quasi,isometric mappings. II, Comm. Pure Appl. Math. 22 (1969), 265–278. MR 244741, DOI 10.1002/cpa.3160220209
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 345-349
- MSC: Primary 47H99; Secondary 46B99
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656099-X
- MathSciNet review: 656099