The use of shears to construct paradoxes in $\textbf {R}^{2}$
HTML articles powered by AMS MathViewer
- by Stanley Wagon
- Proc. Amer. Math. Soc. 85 (1982), 353-359
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656101-5
- PDF | Request permission
Abstract:
It is shown that the addition of a certain shear transformation to the planar isometry group is sufficient to allow a Banach-Tarski type paradox to be constructed in ${{\mathbf {R}}^2}$. This paradox is then combined with a result of Rosenblatt to obtain a characterization of two-dimensional Lebesgue measure as a finitely additive measure.References
- S. Banach, Sur le problème de la mésure, Fund. Math. 4 (1923), 7-33.
—, Un théorème sur les transformations biunivoques, Fund. Math. 6 (1924), 236-239.
S. Banach and A. Tarski, Sur la décomposition des ensembles de points en parties respectivement congruentes, Fund. Math. 6 (1924), 244-277.
- Joël Lee Brenner, Quelques groupes libres de matrices, C. R. Acad. Sci. Paris 241 (1955), 1689–1691 (French). MR 75952
- K. Goldberg and M. Newman, Pairs of matrices of order two which generate free groups, Illinois J. Math. 1 (1957), 446–448. MR 89207
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0251549
- F. Hausdorff, Bemerkung über den Inhalt von Punktmengen, Math. Ann. 75 (1914), no. 3, 428–433 (German). MR 1511802, DOI 10.1007/BF01563735 F. Klein and R. Fricke, Theorie der elliptischen Modulfunktionen, vol. 1, Teubner, Leipzig, 1890.
- A. G. Kurosh, The theory of groups. Vol. II, Chelsea Publishing Co., New York, N.Y., 1956. Translated from the Russian and edited by K. A. Hirsch. MR 0080089 H. Lebesgue, Leçons sur l’intégration, Gauthier-Villars, Paris, 1904 (2nd ed., 1928; reprinted Chelsea, New York, 1973).
- G. A. Margulis, Some remarks on invariant means, Monatsh. Math. 90 (1980), no. 3, 233–235. MR 596890, DOI 10.1007/BF01295368 —, Finitely additive invariant measures on Euclidean spaces, Preprint, 1981.
- Jan Mycielski, Finitely additive invariant measures. I, Colloq. Math. 42 (1979), 309–318. MR 567569, DOI 10.4064/cm-42-1-309-318 J. von Neumann, Zur allgemeinen Theorie des Masses, Fund. Math. 13 (1929), 73-116.
- Joseph Rosenblatt, Uniqueness of invariant means for measure-preserving transformations, Trans. Amer. Math. Soc. 265 (1981), no. 2, 623–636. MR 610970, DOI 10.1090/S0002-9947-1981-0610970-7
- I. N. Sanov, A property of a representation of a free group, Doklady Akad. Nauk SSSR (N.S.) 57 (1947), 657–659 (Russian). MR 0022557
- Wacław Sierpiński, Sur l’équivalence des ensembles par décomposition en deux parties, Fund. Math. 35 (1948), 151–158 (French). MR 28377, DOI 10.4064/fm-35-1-151-158
- Karl Stromberg, The Banach-Tarski paradox, Amer. Math. Monthly 86 (1979), no. 3, 151–161. MR 522339, DOI 10.2307/2321514
- Dennis Sullivan, For $n>3$ there is only one finitely additive rotationally invariant measure on the $n$-sphere defined on all Lebesgue measurable subsets, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 121–123. MR 590825, DOI 10.1090/S0273-0979-1981-14880-1 A. Tarski, Problème 38, Fund. Math. 7 (1925), 381.
- Stanley Wagon, Circle-squaring in the twentieth century, Math. Intelligencer 3 (1980/81), no. 4, 176–181. MR 642135, DOI 10.1007/BF03022979
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 353-359
- MSC: Primary 28C10; Secondary 51M99
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656101-5
- MathSciNet review: 656101