On Dunford-Pettis operators that are Pettis-representable
Author:
Elias Saab
Journal:
Proc. Amer. Math. Soc. 85 (1982), 363-365
MSC:
Primary 47B99; Secondary 46B20, 46G99
DOI:
https://doi.org/10.1090/S0002-9939-1982-0656103-9
MathSciNet review:
656103
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a Banach space. It is shown that if every Dunford-Pettis operator
is Pettis-representable, then every operator
is Pettis-representable.
- [1] J. Bourgain, On martingales in conjugate Banach spaces (unpublished).
- [2] J. Bourgain, Dunford-Pettis operators on 𝐿¹ and the Radon-Nikodým property, Israel J. Math. 37 (1980), no. 1-2, 34–47. MR 599300, https://doi.org/10.1007/BF02762866
- [3] J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR 0453964
- [4] David H. Fremlin and Michel Talagrand, A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means, Math. Z. 168 (1979), no. 2, 117–142. MR 544700, https://doi.org/10.1007/BF01214191
- [5] Nassif Ghoussoub and Elias Saab, On the weak Radon-Nikodým property, Proc. Amer. Math. Soc. 81 (1981), no. 1, 81–84. MR 589141, https://doi.org/10.1090/S0002-9939-1981-0589141-4
- [6] A. Grothendieck, Une caractérisation vectorielle-métrique des espaces 𝐿¹, Canadian J. Math. 7 (1955), 552–561 (French). MR 76301, https://doi.org/10.4153/CJM-1955-060-6
- [7] L. Janicka, Wlasnosci typu Radona-Nikodyma dla przestrzeni Banacha, Thesis, Wrocław, Poland, 1978.
- [8] Kazimierz Musiał, The weak Radon-Nikodým property in Banach spaces, Studia Math. 64 (1979), no. 2, 151–173. MR 537118, https://doi.org/10.4064/sm-64-2-151-174
- [9] Lawrence H. Riddle and J. J. Uhl Jr., Martingales and the fine line between Asplund spaces and spaces not containing a copy of 𝑙₁, Martingale theory in harmonic analysis and Banach spaces (Cleveland, Ohio, 1981) Lecture Notes in Math., vol. 939, Springer, Berlin-New York, 1982, pp. 145–156. MR 668544
- [10] Elias Saab, On Dunford-Pettis operators, Canad. Math. Bull. 25 (1982), no. 2, 207–209. MR 663615, https://doi.org/10.4153/CMB-1982-028-8
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B99, 46B20, 46G99
Retrieve articles in all journals with MSC: 47B99, 46B20, 46G99
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1982-0656103-9
Keywords:
Dunford-Pettis operators,
Pettis-representable operators
Article copyright:
© Copyright 1982
American Mathematical Society