On Dunford-Pettis operators that are Pettis-representable
HTML articles powered by AMS MathViewer
- by Elias Saab
- Proc. Amer. Math. Soc. 85 (1982), 363-365
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656103-9
- PDF | Request permission
Abstract:
Let $E$ be a Banach space. It is shown that if every Dunford-Pettis operator $T:{L^1}[0,1] \to {E^ * }$ is Pettis-representable, then every operator $T:{L^1}[0,1] \to {E^ * }$ is Pettis-representable.References
- J. Bourgain, On martingales in conjugate Banach spaces (unpublished).
- J. Bourgain, Dunford-Pettis operators on $L^{1}$ and the Radon-Nikodým property, Israel J. Math. 37 (1980), no. 1-2, 34–47. MR 599300, DOI 10.1007/BF02762866
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- David H. Fremlin and Michel Talagrand, A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means, Math. Z. 168 (1979), no. 2, 117–142. MR 544700, DOI 10.1007/BF01214191
- Nassif Ghoussoub and Elias Saab, On the weak Radon-Nikodým property, Proc. Amer. Math. Soc. 81 (1981), no. 1, 81–84. MR 589141, DOI 10.1090/S0002-9939-1981-0589141-4
- A. Grothendieck, Une caractérisation vectorielle-métrique des espaces $L^1$, Canadian J. Math. 7 (1955), 552–561 (French). MR 76301, DOI 10.4153/CJM-1955-060-6 L. Janicka, Wlasnosci typu Radona-Nikodyma dla przestrzeni Banacha, Thesis, Wrocław, Poland, 1978.
- Kazimierz Musiał, The weak Radon-Nikodým property in Banach spaces, Studia Math. 64 (1979), no. 2, 151–173. MR 537118, DOI 10.4064/sm-64-2-151-174
- Lawrence H. Riddle and J. J. Uhl Jr., Martingales and the fine line between Asplund spaces and spaces not containing a copy of $l_{1}$, Martingale theory in harmonic analysis and Banach spaces (Cleveland, Ohio, 1981) Lecture Notes in Math., vol. 939, Springer, Berlin-New York, 1982, pp. 145–156. MR 668544
- Elias Saab, On Dunford-Pettis operators, Canad. Math. Bull. 25 (1982), no. 2, 207–209. MR 663615, DOI 10.4153/CMB-1982-028-8
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 363-365
- MSC: Primary 47B99; Secondary 46B20, 46G99
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656103-9
- MathSciNet review: 656103