Reflexivity of operator spaces
HTML articles powered by AMS MathViewer
- by J. M. Baker
- Proc. Amer. Math. Soc. 85 (1982), 366-368
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656104-0
- PDF | Request permission
Abstract:
For reflexive Banach spaces $E$ and $F$ (with $E$ or $F$ having the approximation property), the space of opeartors from $E$ into $F$ (the inductive tensor product of ${E^ * }$ with $F$) is reflexive if and only if the operator space coincides with the inductive tensor product of ${E^ * }$ with $F$. Consequently, $E$ must be finite-dimensional if either the projective tensor product of $E$ with ${E^ * }$ is reflexive, or the inductive tensor product of $E$ with ${E^ * }$ is reflexive and $E$ has the approximation property.References
- N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1958.
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539
- J. R. Holub, Hilbertian operators and reflexive tensor products, Pacific J. Math. 36 (1971), 185–194. MR 301487
- J. R. Holub, Reflexivity of $L(E,\,F)$, Proc. Amer. Math. Soc. 39 (1973), 175–177. MR 315407, DOI 10.1090/S0002-9939-1973-0315407-4
- William H. Ruckle, Reflexivity of $L(E,\,F)$, Proc. Amer. Math. Soc. 34 (1972), 171–174. MR 291777, DOI 10.1090/S0002-9939-1972-0291777-X
- Robert Schatten, A Theory of Cross-Spaces, Annals of Mathematics Studies, No. 26, Princeton University Press, Princeton, N. J., 1950. MR 0036935
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 366-368
- MSC: Primary 47D15; Secondary 46A32, 46B10
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656104-0
- MathSciNet review: 656104