The extreme points of $\Sigma$
HTML articles powered by AMS MathViewer
- by D. H. Hamilton PDF
- Proc. Amer. Math. Soc. 85 (1982), 393-396 Request permission
Abstract:
For any compact set in ${\mathbf {C}}$, with complement $\Omega$ which contains $\infty$ and is connected the class $\Sigma$ consists of functions $g(z) = z + {b_1}{z^{ - 1}} + \cdots$ that are univalent in $\Omega$. We prove that $g \in \Sigma$ is an extreme point of $\Sigma$ if and only if ${\mathbf {C}} - g(\Omega )$ has zero area.References
- Lars Ahlfors and Arne Beurling, Conformal invariants and function-theoretic null-sets, Acta Math. 83 (1950), 101–129. MR 36841, DOI 10.1007/BF02392634
- W. E. Kirwan and G. Schober, On extreme points and support points for some families of univalent functions, Duke Math. J. 42 (1975), 285–296. MR 367174
- Nguyen Xuan Uy, Removable sets of analytic functions satisfying a Lipschitz condition, Ark. Mat. 17 (1979), no. 1, 19–27. MR 543500, DOI 10.1007/BF02385454
- Glenn Schober, Univalent functions—selected topics, Lecture Notes in Mathematics, Vol. 478, Springer-Verlag, Berlin-New York, 1975. MR 0507770
- George Springer, Extreme Punkte der konvexen Hülle schlichter Funktionen, Math. Ann. 129 (1955), 230–232 (German). MR 69272, DOI 10.1007/BF01362368
Additional Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 393-396
- MSC: Primary 30C55; Secondary 30H05
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656110-6
- MathSciNet review: 656110