Analytic continuation on complex lines
HTML articles powered by AMS MathViewer
- by Joseph A. Cima and Josip Globevnik
- Proc. Amer. Math. Soc. 85 (1982), 411-413
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656114-3
- PDF | Request permission
Abstract:
The following extension theorem is proved. Let $\Omega \subset {\mathbf {C}}$ be an open set containing $\Delta$, the open unit disc in ${\mathbf {C}}$, and the point 1. Suppose that $f$ is holomorphic on $B$, the open unit ball of ${{\mathbf {C}}^N}$, let $x \in \partial B$ and assume that for all $y \in \partial B$ in a neighborhood of $x$ the function $\varsigma \to f(\varsigma y)$, holomorphic on $\Delta$, continues analytically into $\Omega$. Then $f$ continues analytically into a neighborhood of $x$.References
- Salomon Bochner and William Ted Martin, Several Complex Variables, Princeton Mathematical Series, vol. 10, Princeton University Press, Princeton, N. J., 1948. MR 0027863
- Josip Globevnik and Edgar Lee Stout, Highly noncontinuable functions on convex domains, Bull. Sci. Math. (2) 104 (1980), no. 4, 417–434 (English, with French summary). MR 602409
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 411-413
- MSC: Primary 32D15; Secondary 30B40, 32A40
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656114-3
- MathSciNet review: 656114