## Clear visibility and the dimension of kernels of starshaped sets

HTML articles powered by AMS MathViewer

- by Marilyn Breen PDF
- Proc. Amer. Math. Soc.
**85**(1982), 414-418 Request permission

## Abstract:

This paper will use the concept of clearly visible to obtain a Krasnosel’skii-type theorem for the dimension of the kernel of a starshaped set, and the following result will be proved: For each $k$ and $n$, $1 \leqslant k \leqslant n$, let $f(n,n) = n + 1$ and $f(n,k) = 2n$ if $1 \leqslant k \leqslant n - 1$. Let $S$ be a nonempty compact set in ${R^n}$. Then for a $k$ with $1 \leqslant k \leqslant n$, dim ker $S \geqslant k$ if and only if every $f(n,k)$ points of bdry $S$ are clearly visible from a common $k$-dimensional subset of $S$. If $k = 1$ or $k = n$, the result is best possible. Moreover, if $S$ is a compact, connected, nonconvex set in ${R^2}$, then bdry $S$ may be replaced by lnc $S$ in the theorem.## References

- Marilyn Breen,
*A Krasnosel′skiĭ-type theorem for points of local nonconvexity*, Proc. Amer. Math. Soc.**85**(1982), no. 2, 261–266. MR**652454**, DOI 10.1090/S0002-9939-1982-0652454-2 - Marilyn Breen,
*$k$-dimensional intersections of convex sets and convex kernels*, Discrete Math.**36**(1981), no. 3, 233–237. MR**675355**, DOI 10.1016/S0012-365X(81)80019-2 - Marilyn Breen,
*The dimension of the kernel of a planar set*, Pacific J. Math.**82**(1979), no. 1, 15–21. MR**549829** - K. J. Falconer,
*The dimension of the convex kernel of a compact starshaped set*, Bull. London Math. Soc.**9**(1977), no. 3, 313–316. MR**467536**, DOI 10.1112/blms/9.3.313 - Meir Katchalski,
*The dimension of intersections of convex sets*, Israel J. Math.**10**(1971), 465–470. MR**305237**, DOI 10.1007/BF02771734 - M. Krasnosselsky,
*Sur un critère pour qu’un domaine soit étoilé*, Rec. Math. [Mat. Sbornik] N. S.**19(61)**(1946), 309–310 (Russian, with French summary). MR**0020248** - Sam B. Nadler Jr.,
*Hyperspaces of sets*, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49, Marcel Dekker, Inc., New York-Basel, 1978. A text with research questions. MR**0500811** - Nick M. Stavrakas,
*The dimension of the convex kernel and points of local nonconvexity*, Proc. Amer. Math. Soc.**34**(1972), 222–224. MR**298549**, DOI 10.1090/S0002-9939-1972-0298549-0 - Frederick A. Valentine,
*Convex sets*, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Toronto-London, 1964. MR**0170264**

## Additional Information

- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**85**(1982), 414-418 - MSC: Primary 52A30; Secondary 52A35
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656115-5
- MathSciNet review: 656115