The best constant in Burkholder's weak- inequality for the martingale square function
Author:
David C. Cox
Journal:
Proc. Amer. Math. Soc. 85 (1982), 427-433
MSC:
Primary 60G42; Secondary 42B25
DOI:
https://doi.org/10.1090/S0002-9939-1982-0656117-9
MathSciNet review:
656117
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a martingale with difference sequence
. We give a new proof of the inequality



- [1] Béla Bollobás, Martingale inequalities, Math. Proc. Cambridge Philos. Soc. 87 (1980), no. 3, 377–382. MR 556917, https://doi.org/10.1017/S0305004100056802
- [2] D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494–1504. MR 208647, https://doi.org/10.1214/aoms/1177699141
- [3] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probability 1 (1973), 19–42. MR 365692, https://doi.org/10.1214/aop/1176997023
- [4] D. L. Burkholder, A sharp inequality for martingale transforms, Ann. Probab. 7 (1979), no. 5, 858–863. MR 542135
- [5] J. H. B. Kemperman, The general moment problem, a geometric approach, Ann. Math. Statist. 39 (1968), 93–122. MR 247645, https://doi.org/10.1214/aoms/1177698508
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60G42, 42B25
Retrieve articles in all journals with MSC: 60G42, 42B25
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1982-0656117-9
Article copyright:
© Copyright 1982
American Mathematical Society