Eigenvalues of the Laplacian on forms
Author:
Jozef Dodziuk
Journal:
Proc. Amer. Math. Soc. 85 (1982), 437-443
MSC:
Primary 58G25; Secondary 35P15, 58G30
DOI:
https://doi.org/10.1090/S0002-9939-1982-0656119-2
MathSciNet review:
656119
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Some bounds for eigenvalues of the Laplace operator acting on forms on a compact Riemannian manifold are derived. In case of manifolds without boundary we give upper bounds in terms of the curvature, its covariant derivative and the injectivity radius. For a small geodesic ball upper and lower bounds of eigenvalues in terms of bounds of sectional curvature are given.
- [1] Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964. MR 0169148
- [2] Shiu Yuen Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975), no. 3, 289–297. MR 378001, https://doi.org/10.1007/BF01214381
- [3] R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
- [4]
J. Eichhorn, Das Spektrum von
auf offenen Riemannschen Mannigfaltigkeiten mit beschränkter Schmitt-krümmung und beschranktem Kern-Tensor, preprint.
- [5] Stéfan Hildebrandt, Helmut Kaul, and Kjell-Ove Widman, An existence theorem for harmonic mappings of Riemannian manifolds, Acta Math. 138 (1977), no. 1-2, 1–16. MR 433502, https://doi.org/10.1007/BF02392311
- [6] M. Gromov, Paul Lévy's isoperimetric inequality, preprint.
- [7] Helmut Kaul, Schranken für die Christoffelsymbole, Manuscripta Math. 19 (1976), no. 3, 261–273. MR 433351, https://doi.org/10.1007/BF01170775
- [8] Jürgen Kern, Das Pinchingproblem in Fastriemannschen Finslerschen Mannigfaltigkeiten, Manuscripta Math. 4 (1971), 341–350 (German, with English summary). MR 290322, https://doi.org/10.1007/BF01168701
- [9] D. B. Ray and I. M. Singer, 𝑅-torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971), 145–210. MR 295381, https://doi.org/10.1016/0001-8708(71)90045-4
- [10] G. de Rham, Variétés différentiables, Hermann, Paris, 1955.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G25, 35P15, 58G30
Retrieve articles in all journals with MSC: 58G25, 35P15, 58G30
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1982-0656119-2
Article copyright:
© Copyright 1982
American Mathematical Society