A NOTE ON SPACES IN WHICH EVERY OPEN SET IS z-EMBEDDED

JOSE L. BLASCO

ABSTRACT. Let Oz be the class of topological spaces in which every open set is z-embedded. In this note we prove the following: If Y is a dense subspace of the real line, then the spaces βY and $\beta Y - Y$ are not in Oz.

Introduction. A subset S of a topological space X is z-embedded in X if every zero-set in S is the intersection of S with a zero-set in X. (A zero-set is the set of zeros of a real-valued continuous function.) Blair [1] studied the class Oz of topological spaces in which every open set is z-embedded. This class includes all perfectly normal spaces, all extremally disconnected spaces and all products of separable metric spaces. For basic results of the class Oz see [1 and 2].

Blair [1] asked if the spaces βR, βQ and $\beta Q - Q$ are in Oz. In [6] Terada characterizes a class of spaces whose Stone-Čech compactifications are in Oz. As an application of his characterizations he showed that both βR and βQ do not belong to Oz. E. K. van Douwen [4] has proved that $\beta Q - Q$ does not belong to Oz.

In this note we shall prove that for Y dense in R, the spaces βY and $\beta Y - Y$ are not in Oz.

Preliminaries. Throughout this paper we adopt the notation and terminology of [5]. βX and vX denote respectively the Stone-Čech compactification and the Hewitt realcompactification of the Tychonoff space X. $Z(X)$ denotes the family of all zero-sets in X. The remainder $\beta X - X$ is always denoted by X^*. R is the space of all real numbers with the usual topology, Z is the subspace of all integer numbers and N is the subspace of all positive integers.

Let S be a subset of the topological space X. The G_δ-closure of S is the set G_δ-cl$_X S$ of all points $p \in X$ satisfying the condition that whenever G is a G_δ-set containing p, then $G \cap S \neq \emptyset$. For Tychonoff X, G_δ-cl$_X S$ is precisely all $p \in X$ for which each zero-set about p meets S. The following fact is needed: (a) [3, 1.1(b)] If S is z-embedded in the Tychonoff space X, then the G_δ-closure of S in βX is νS. The set S is said to be G_δ-dense in X if $X = G_\delta$-cl$_X S$.

The result. In the sequel, Y will be a dense subspace of R. Let $S = \{a(n): n \in Z\}$ be a copy of Z contained in Y such that $a(n + 1) - a(n) \geq 1$ for $n \in Z$. Consider the following closed subsets of Y, $I = \bigcup \{[a(2n), a(2n + 1)] \cap Y: n \in Z\}$ and $J = \bigcup \{[a(2n - 1), a(2n)] \cap Y: n \in Z\}$. Since Y is a metric space, I and J are zero-sets in Y. Therefore $\beta Y = cl_{\beta Y} I \cup cl_{\beta Y} J$ and $cl_{\beta Y} S = cl_{\beta Y} I \cap cl_{\beta Y} J$. We
need the following fact:

(b) \(\text{cl}_{\beta Y} S - S \subseteq \text{cl}_{\gamma^*}((\text{cl}_{\beta Y} I - \text{cl}_{\beta Y} S) \cap \gamma^*) \cap \text{cl}_{\gamma^*}((\text{cl}_{\beta Y} J - \text{cl}_{\beta Y} S) \cap \gamma^*). \)

Indeed, let \(p \) be a point in \(\text{cl}_{\beta Y} S - S \) and let \(V \) be a closed neighborhood of \(p \) in \(\gamma^* \). There exists an open set \(W \) in \(\beta Y \) such that \(p \in W \) and \(\gamma^* \cap \text{cl}_{\beta Y} W \subseteq V \). Since the set \(W \cap S \) is infinite, we can choose a closed (in \(\beta Y \)) copy \(E \) of \(N \) such that \(E \subseteq I \cap W \) and \(E \cap S = \emptyset \). Then

\[\emptyset \neq \gamma^* \cap \text{cl}_{\beta Y} E \subseteq \gamma^* \cap \text{cl}_{\beta Y} I \cap \text{cl}_{\beta Y} W \subseteq (\text{cl}_{\beta Y} I) \cap V. \]

Since \(E \) and \(S \) are disjoint zero-sets in \(\gamma \) it follows that \(\text{cl}_{\beta Y} E \cap \text{cl}_{\beta Y} S = \emptyset \) and therefore the set \((\text{cl}_{\beta Y} I - \text{cl}_{\beta Y} S) \cap V \) is nonempty. Hence

\[p \in \text{cl}_{\gamma^*}((\text{cl}_{\beta Y} I - \text{cl}_{\beta Y} S) \cap \gamma^*). \]

We can replace \(I \) by \(J \) in the above argument. The inclusion is now proved.

Let \(X = \beta Y - \text{cl}_{\beta Y} S \).

Assertion 1. \(X \) is not \(C^* \)-embedded in \(\beta Y - S \).

Proof. The family \(\{ \text{cl}_{\beta Y} I - \text{cl}_{\beta Y} S, \text{cl}_{\beta Y} J - \text{cl}_{\beta Y} S \} \) is a partition of \(X \), so the characteristic function (in \(X \)) \(f \) of the set \(\text{cl}_{\beta Y} I - \text{cl}_{\beta Y} S \) is continuous on \(X \). According to (b), \(f \) has no continuous extension to \(\beta Y - S \), therefore \(X \) is not \(C^* \)-embedded in \(\beta Y - S \).

Assertion 2. The \(G_\delta \)-closure in \(\beta Y \) of \(\gamma^* \cap X \) is \(\gamma^* \).

Proof. Since the points of \(\gamma \) are zero-sets in \(\beta Y \), it follows that

\[G_{\delta^*}\text{cl}_{\beta Y}(\gamma^* \cap X) \subseteq \gamma^*. \]

Suppose now that \(p \in \gamma^* \) is not in \(G_{\delta^*}\text{cl}_{\beta Y}(\gamma^* \cap X) \). Then there exists a zero-set \(T \) in \(\beta Y \) such that \(p \in T \subseteq \beta Y - (\gamma^* \cap X) \). Moreover, since \(\gamma \) is realcompact [5, Corollary 8.15] there is a zero-set \(F \) in \(\beta Y \) such that \(p \in F \subseteq Y^* \). Let \(h \) be a real-valued continuous function on \(\beta Y \) such that \(h^{-1}(\{0\}) = T \cap F \subseteq \gamma^* \cap \text{cl}_{\beta Y} S \). The reciprocal \(g \) of \(h|X \cup S \) is continuous and unbounded on \(X \cup S \), consequently \(g \) must be unbounded on some countable closed subspace \(H \) of \(\gamma \) which misses \(S \). Since \(H \) and \(S \) are disjoint zero-sets in \(\gamma \) we have that \(\text{cl}_{\beta Y} H \cap \text{cl}_{\beta Y} S = \emptyset \), therefore \(g \) must be unbounded on \(\text{cl}_{\beta Y} H \subseteq X \cup S \), which is a contradiction. This shows \(\gamma^* = G_{\delta^*}\text{cl}_{\beta Y}(\gamma^* \cap X) \).

Assertion 3. The space \(\beta Y \) does not belong to \(Oz \).

Proof. Suppose that \(\beta Y \in Oz \). Then \(X \) is \(z \)-embedded in \(\beta Y \) and according to (a), \(\nu X = G_{\delta^*}\text{cl}_{\beta Y} X \). Since the points of \(Y \) are zero-sets in \(\beta Y \), it follows that \(\nu X \subseteq \beta Y - S \). From Assertion 2 we have \(\nu X = \beta Y - S \), which contradicts Assertion 1. Hence \(\beta Y \notin Oz \).

A subset \(S \) of a space \(E \) is a generalized cozero-set in case for every neighborhood \(V \) of \(S \) there is a cozero-set \(P \) such that \(S \subseteq P \subseteq V \). It is known that every generalized cozero-set in a normal space is normal and \(z \)-embedded [1, Theorem 2.5].

Assertion 4. \(\gamma^* \) is realcompact and \(z \)-embedded in \(\beta Y \).
PROOF. Since every compact subset of Y is a zero-set in βY, we have that Y^* is a generalized cozero-set in βY. According to [1, Theorem 2.5], Y^* is z-embedded in βY. On the other hand, since every cozero-set in βY is realcompact and $Y^* = \bigcap\{\beta Y - \{p\}: p \in Y\}$, it follows that Y^* is realcompact.

ASSERTION 5. Y^* does not belong to Oz.

PROOF. From Assertion 4, Y^* is z-embedded in βY. Thus by Assertion 2, G_δ-cl$_\gamma(Y^* \cap X) = Y^*$. Hence, if $Y^* \in Oz$ we have that $Y^* \cap X$ is G_δ-dense and z-embedded in Y^* [1, Theorem 5.1]. Therefore $Y^* = v(Y^* \cap X)$ and $Y^* \cap X$ is C-embedded in Y^*.

On the other hand, the set $(cl_{\beta Y} I - cl_{\beta Y} S) \cap Y^*$ is clopen in $Y^* \cap X$, therefore its characteristic function (in $Y^* \cap X$) is continuous. According to (b), this function has no continuous extension to Y^*. This contradiction shows that $Y^* \notin Oz$.

REFERENCES

1. R. L. Blair, Spaces in which special sets are z-embedded, Canad. J. Math. 28 (1976), 673–690.

CATEDRA DE MATEMATICAS II, FACULTAD DE CIENCIAS, BURJASOT, VALENCIA, SPAIN