A note on spaces in which every open set is $z$-embedded
HTML articles powered by AMS MathViewer
- by José L. Blasco
- Proc. Amer. Math. Soc. 85 (1982), 444-446
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656120-9
- PDF | Request permission
Abstract:
Let $Oz$ be the class of topological spaces in which every open set is $z$-embedded. In this note we prove the following: If $Y$ is a dense subspace of the real line, then the spaces $\beta Y$ and $\beta Y - Y$ are not in $Oz$.References
- Robert L. Blair, Spaces in which special sets are $z$-embedded, Canadian J. Math. 28 (1976), no. 4, 673–690. MR 420542, DOI 10.4153/CJM-1976-068-9
- Robert L. Blair, Čech-Stone remainders of locally compact nonpseudocompact spaces, Topology Proc. 4 (1979), no. 1, 13–17 (1980). MR 583685
- Robert L. Blair and Anthony W. Hager, Notes on the Hewitt realcompactification of a product, General Topology and Appl. 5 (1975), 1–8. MR 365496 E. K. van Douwen, The Čech-Stone remainder of some nowhere locally compact spaces, manuscript.
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- Toshiji Terada, On spaces whose Stone-Čech compactification is Oz, Pacific J. Math. 85 (1979), no. 1, 231–237. MR 571637
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 444-446
- MSC: Primary 54C50; Secondary 54C45, 54D40, 54G20
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656120-9
- MathSciNet review: 656120