Maps of the interval with closed periodic set
HTML articles powered by AMS MathViewer
- by Zbigniew Nitecki
- Proc. Amer. Math. Soc. 85 (1982), 451-456
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656122-2
- PDF | Request permission
Abstract:
We show that for any continuous map of the interval whose periodic points form a closed set, every nonwandering point is periodic with least period a power of two.References
- Louis Block, Mappings of the interval with finitely many periodic points have zero entropy, Proc. Amer. Math. Soc. 67 (1977), no. 2, 357–360. MR 467841, DOI 10.1090/S0002-9939-1977-0467841-3
- Louis Block, Continuous maps of the interval with finite nonwandering set, Trans. Amer. Math. Soc. 240 (1978), 221–230. MR 474240, DOI 10.1090/S0002-9947-1978-0474240-2
- Louis Block, Homoclinic points of mappings of the interval, Proc. Amer. Math. Soc. 72 (1978), no. 3, 576–580. MR 509258, DOI 10.1090/S0002-9939-1978-0509258-X
- Louis Block, Simple periodic orbits of mappings of the interval, Trans. Amer. Math. Soc. 254 (1979), 391–398. MR 539925, DOI 10.1090/S0002-9947-1979-0539925-9
- Louis Block, John Guckenheimer, MichałMisiurewicz, and Lai Sang Young, Periodic points and topological entropy of one-dimensional maps, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979) Lecture Notes in Math., vol. 819, Springer, Berlin, 1980, pp. 18–34. MR 591173
- Ethan M. Coven and G. A. Hedlund, Continuous maps of the interval whose periodic points form a closed set, Proc. Amer. Math. Soc. 79 (1980), no. 1, 127–133. MR 560598, DOI 10.1090/S0002-9939-1980-0560598-7
- Ethan M. Coven and Zbigniew Nitecki, Nonwandering sets of the powers of maps of the interval, Ergodic Theory Dynam. Systems 1 (1981), no. 1, 9–31. MR 627784, DOI 10.1017/s0143385700001139
- Jaume Llibre, Continuous maps of the circle with finitely many periodic points, Publ. Sec. Mat. Univ. Autònoma Barcelona 25 (1981), 107–130. MR 767231
- Tien Yien Li, MichałMisiurewicz, Giulio Pianigiani, and James A. Yorke, Odd chaos, Phys. Lett. A 87 (1981/82), no. 6, 271–273. MR 643455, DOI 10.1016/0375-9601(82)90692-2
- MichałMisiurewicz, Invariant measures for continuous transformations of $[0,1]$ with zero topological entropy, Ergodic theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978) Lecture Notes in Math., vol. 729, Springer, Berlin, 1979, pp. 144–152. MR 550417
- Zbigniew Nitecki, Topological dynamics on the interval, Ergodic theory and dynamical systems, II (College Park, Md., 1979/1980), Progr. Math., vol. 21, Birkhäuser, Boston, Mass., 1982, pp. 1–73. MR 670074
- Jin Cheng Xiong, Continuous self-maps of the closed interval whose periodic points form a closed set, J. China Univ. Sci. Tech. 11 (1981), no. 4, 14–23 (English, with Chinese summary). MR 701781
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 451-456
- MSC: Primary 58F20; Secondary 54H20
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656122-2
- MathSciNet review: 656122