Hadamard matrices and -codes of length
Author:
C. H. Yang
Journal:
Proc. Amer. Math. Soc. 85 (1982), 480-482
MSC:
Primary 05B20; Secondary 62K10, 94A29
DOI:
https://doi.org/10.1090/S0002-9939-1982-0656128-3
MathSciNet review:
656128
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: It is found that four-symbol -codes of length
can be composed for odd
or
, where all
,
and
. Consequently new families of Hadamard matrices of orders
and
can be constructed, where
is the order of Williamson matrices.
- [1] R. J. Turyn, Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings, J. Combinatorial Theory Ser. A 16 (1974), 313–333. MR 345847, https://doi.org/10.1016/0097-3165(74)90056-9
- [2] -, Computation of certain Hadamard matrices, Notices Amer. Math. Soc. 20 (1973), A-l.
- [3] -, Personal communication (1980).
- [4] J. S. Wallis, On Hadamard matrices, J. Combin. Theory 18A (1975), 149-164.
- [5] Anthony V. Geramita and Jennifer Seberry, Orthogonal designs, Lecture Notes in Pure and Applied Mathematics, vol. 45, Marcel Dekker, Inc., New York, 1979. Quadratic forms and Hadamard matrices. MR 534614
- [6] A. C. Mukhopadhyay, Some infinite classes of Hadamard matrices, J. Combin. Theory Ser. A 25 (1978), no. 2, 128–141. MR 509438, https://doi.org/10.1016/0097-3165(78)90075-4
- [7] C. H. Yang, Hadamard matrices, finite sequences, and polynomials defined on the unit circle, Math. Comp. 33 (1979), no. 146, 688–693. MR 525685, https://doi.org/10.1090/S0025-5718-1979-0525685-8
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 05B20, 62K10, 94A29
Retrieve articles in all journals with MSC: 05B20, 62K10, 94A29
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1982-0656128-3
Article copyright:
© Copyright 1982
American Mathematical Society