Hadamard matrices and $\delta$-codes of length $3n$
HTML articles powered by AMS MathViewer
- by C. H. Yang
- Proc. Amer. Math. Soc. 85 (1982), 480-482
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656128-3
- PDF | Request permission
Abstract:
It is found that four-symbol $\delta$-codes of length $t = 3n$ can be composed for odd $n \leqslant 59$ or $n = {2^a}{10^b}{26^c} + 1$, where all $a$, $b$ and $c \geqslant 0$. Consequently new families of Hadamard matrices of orders $4tw$ and $20tw$ can be constructed, where $w$ is the order of Williamson matrices.References
- R. J. Turyn, Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings, J. Combinatorial Theory Ser. A 16 (1974), 313–333. MR 345847, DOI 10.1016/0097-3165(74)90056-9 —, Computation of certain Hadamard matrices, Notices Amer. Math. Soc. 20 (1973), A-l. —, Personal communication (1980). J. S. Wallis, On Hadamard matrices, J. Combin. Theory 18A (1975), 149-164.
- Anthony V. Geramita and Jennifer Seberry, Orthogonal designs, Lecture Notes in Pure and Applied Mathematics, vol. 45, Marcel Dekker, Inc., New York, 1979. Quadratic forms and Hadamard matrices. MR 534614
- A. C. Mukhopadhyay, Some infinite classes of Hadamard matrices, J. Combin. Theory Ser. A 25 (1978), no. 2, 128–141. MR 509438, DOI 10.1016/0097-3165(78)90075-4
- C. H. Yang, Hadamard matrices, finite sequences, and polynomials defined on the unit circle, Math. Comp. 33 (1979), no. 146, 688–693. MR 525685, DOI 10.1090/S0025-5718-1979-0525685-8
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 480-482
- MSC: Primary 05B20; Secondary 62K10, 94A29
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656128-3
- MathSciNet review: 656128