On a certain transitivity of the graded ring associated with an ideal
HTML articles powered by AMS MathViewer
- by Ngô Viêt Trung
- Proc. Amer. Math. Soc. 85 (1982), 489-495
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660588-1
- PDF | Request permission
Abstract:
A simple but useful result will be given concerning a certain transitivity of the property that the graded ring associated with an ideal is a domain. As a consequence, we compute the graded rings associated with the defining prime ideals of certain determinantal varieties or of their projections from infinity to a hyperplane and get two new classes of primes having the equality of ordinary and symbolic powers in polynomial rings over a field.References
- R. Achilles, P. Schenzel, and W. Vogel, Bemerkungen über normale Flachheit und normale Torsionsfreiheit und Anwendungen, Period. Math. Hungar. 12 (1981), no. 1, 49–75 (German). MR 607628, DOI 10.1007/BF01848171
- Jacob Barshay, Determinantal varieties, monomial semigroups, and algebras associated with ideals, Proc. Amer. Math. Soc. 40 (1973), 16–22. MR 318137, DOI 10.1090/S0002-9939-1973-0318137-8
- R. C. Cowsik and M. V. Nori, On the fibres of blowing up, J. Indian Math. Soc. (N.S.) 40 (1976), no. 1-4, 217–222 (1977). MR 572990
- Melvin Hochster, Criteria for equality of ordinary and symbolic powers of primes, Math. Z. 133 (1973), 53–65. MR 323771, DOI 10.1007/BF01226242
- M. Hochster and L. J. Ratliff Jr., Five theorems on Macaulay rings, Pacific J. Math. 44 (1973), 147–172. MR 314834
- L. Robbiano and G. Valla, Primary powers of a prime ideal, Pacific J. Math. 63 (1976), no. 2, 491–498. MR 409492
- Lorenzo Robbiano and Giuseppe Valla, On normal flatness and normal torsion-freeness, J. Algebra 43 (1976), no. 2, 552–560. MR 427315, DOI 10.1016/0021-8693(76)90126-5
- Ngô Viêt Trung, On the symbolic powers of determinantal ideals, J. Algebra 58 (1979), no. 2, 361–369. MR 540645, DOI 10.1016/0021-8693(79)90167-4 —, Der graduierte Ring bezüglich des Primideals von Macaulay, Wiss. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe (to appear).
- Ngô Viêt Trung, A class of imperfect prime ideals having the equality of ordinary and symbolic powers, J. Math. Kyoto Univ. 21 (1981), no. 2, 239–250. MR 625607
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 489-495
- MSC: Primary 13A17; Secondary 13H10
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660588-1
- MathSciNet review: 660588