On $U_{m}$-numbers
HTML articles powered by AMS MathViewer
- by K. Alniaçik
- Proc. Amer. Math. Soc. 85 (1982), 499-505
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660590-X
- PDF | Request permission
Abstract:
In this paper we shall give some examples of ${U_m}$-numbers by using the continued fraction expansions of algebraic numbers of degree $m > 1$.References
- K. Alniaçik, On $p$-adic $U_m$-numbers, İstanbul Üniv. Fen Fak. Mat. Derg. 50 (1991), 1–7 (1993) (English, with English and Turkish summaries). MR 1270564
- Alan Baker, Transcendental number theory, Cambridge University Press, London-New York, 1975. MR 0422171, DOI 10.1017/CBO9780511565977
- J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York, 1957. MR 0087708 R. Güting, Approximation of algebraic number by algebraic numbers, Michigan Math. J. 8 (1951), 149-159.
- Orhan Ş. İçen, Anhang zu den Arbeiten “Über die Funktionswerte der $p$-adisch elliptischen Funktionen. I, II” (İstanbul Üniv. Fen Fak. Mecm. Ser. A 36 (1971), 53–87 (1974); ibid. 35 (1970), 139–166 (1972)), İstanbul Üniv. Fen Fak. Mecm. Ser. A 38 (1973), 25–35 (1975) (German, with Turkish summary). MR 389777
- J. F. Koksma, Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen, Monatsh. Math. Phys. 48 (1939), 176–189 (German). MR 845, DOI 10.1007/BF01696176
- W. J. LeVeque, On Mahler’s $U$-numbers, J. London Math. Soc. 28 (1953), 220–229. MR 54658, DOI 10.1112/jlms/s1-28.2.220 —, Topics in number theory. Vol. II, Addison-Wesley, Reading, Mass., 1956. K. Mahler, Zur Approximation der Exponential Funktion und des logarithmus. I, J. Reine Angew. Math. 166 (1932), 118-136.
- Eduard Wirsing, Approximation mit algebraischen Zahlen beschränkten Grades, J. Reine Angew. Math. 206 (1961), 67–77 (German). MR 142510, DOI 10.1515/crll.1961.206.67
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 499-505
- MSC: Primary 10F20; Secondary 10F35
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660590-X
- MathSciNet review: 660590