The unit groups of affine algebraic monoids
HTML articles powered by AMS MathViewer
- by William C. Waterhouse PDF
- Proc. Amer. Math. Soc. 85 (1982), 506-508 Request permission
Abstract:
An affine algebraic group can be embedded as a proper dense subgroup of an affine algebraic monoid iff it has a homomorphism onto the multiplicative group.References
- Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 0302656
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773
- Mohan S. Putcha, On linear algebraic semigroups. I, II, Trans. Amer. Math. Soc. 259 (1980), no. 2, 457–469, 471–491. MR 567091, DOI 10.1090/S0002-9947-1980-0567091-0 —, On linear algebraic semigroups. II, Trans. Amer. Math. Soc. 259 (1980), 471-491.
- Mohan S. Putcha, On linear algebraic semigroups. III, Internat. J. Math. Math. Sci. 4 (1981), no. 4, 667–690. MR 663652, DOI 10.1155/S0161171281000513 —, Green’s relations on a connected algebraic monoid (to appear). —, The group of units of a connected algebraic monoid (to appear). —, Connected algebraic monoids (to appear).
Additional Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 506-508
- MSC: Primary 20G15; Secondary 20M10
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660591-1
- MathSciNet review: 660591