MINIMIZING SETUPS FOR CYCLE-FREE ORDERED SETS

D. DUFFUS, I. RIVAL AND P. WINKLER

Abstract. A machine performs a set of jobs one at a time subject to a set of precedence constraints. We consider the problem of scheduling the jobs to minimize the number of "setups".

Suppose a single machine is to perform a set of jobs, one at a time; a set of precedence constraints prohibits the start of certain jobs until some other jobs are already completed. Any job which is performed immediately after a job which is not constrained to precede it, however, requires a "setup"—entailing some fixed additional cost. The problem is schedule the jobs to minimize the number of setups.

It is common to render "a set of precedence constraints on a set of jobs" as "an antisymmetric and transitive binary relation on a set," that is, "a (partial) ordering on a set." In this analogy a "schedule satisfying the precedence constraints" becomes "a linear extension of the ordered set" (of all jobs). The problem of minimizing the number of setups can be entirely recast as a problem concerning linear extensions of an ordered set. The problem itself is attributed in [2] to Kuntzmann (cf. [6]). Progress on the problem can be found in several papers including [3, 4, and 7] and recently W. R. Pulleyblank [7] has shown that this problem belongs to that class of problems whose complexity is described as NP-hard.

For elements a, b of an ordered set (P, \(\leq \))—simply written as P—we say that b covers a if a \(\leq b \) in P and a \(\leq c < b \) implies a = c. Let L be a linear extension of P; that is, a total ordering of the underlying set of P such that a < b in L whenever a < b in P. A 'setup for L' is an ordered pair (a, b) of elements of P for which b covers a in L but a \(\not< b \) (and hence also a \(\not< b \)) in P. Let \(s_L(P) \) count the number of such ordered pairs and let

\[
s(P) = \min \left\{ s_L(P) \mid L \text{ is a linear extension of P} \right\}.
\]

The problem is construct a linear extension L of the ordered set P for which \(s_L(P) = s(P) \).

Received by the editors June 12, 1981 and, in revised form, December 21, 1981.

1980 Mathematics Subject Classification. Primary 06A10.

©1982 American Mathematical Society
0002-9939/82/0000-0056/$02.25

509
Any linear extension L of P can be obtained by partitioning P into chains (linearly ordered subsets) C_1, C_2, \ldots, C_m such that $x < y$ in L if either $x < y$ in P, or $x \in C_i$ and $y \in C_j$, where $i < j$. In particular, L is the \textit{linear sum} of chains $L = C_1 \oplus C_2 \oplus \cdots \oplus C_m$.

If the greatest element $\max(C_i)$ of C_i is not below the least element $\min(C_{i+1})$ of C_{i+1} in P, then $(\max(C_i), \min(C_{i+1}))$ is a setup for L. Evidently, $s_L(P) \leq m - 1$ and if $\max(C_i) \not< \min(C_{i+1})$ for each $i = 1, 2, \ldots, m - 1$, then $s_L(P) = m - 1$. According to Dilworth's theorem [5], the smallest number of chains into which P can be partitioned is equal to the \textit{width} $w(P)$ of P—the size of a maximum-sized antichain. Therefore, $s(P) \geq w(P) - 1$.

Of course, equality does not in general obtain. Indeed, a partition $C_1, C_2, \ldots, C_{w(P)}$ of P into chains can be arranged to form a linear extension of P only if there is a permutation ρ of $\{1, 2, \ldots, w(P)\}$ such that $\rho(i) < \rho(j)$ implies $x \nless y$ for any $x \in C_{\rho(i)}$ and $y \in C_{\rho(j)}$. No such permutation could exist if there were a subset (say, $\{C_1, C_2, \ldots, C_n\}$) of the partition, and elements $x_i, y_i \in C_i$, $i = 1, 2, \ldots, n$, satisfying

$$y_1 < x_1, x_1 > y_2, y_2 < x_2, x_2 > y_3, \ldots, x_{n-1} > y_n, y_n < x_n, x_n > y_1.$$

An ordered set $\{x_1, y_1, x_2, y_2, \ldots, x_n, y_n\}$ of size $2n$, $n \geq 2$, with these comparabilities, and no others, is called an \textit{alternating $2n$-cycle}, or more briefly a $2n$-cycle (see Figure 2).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.png}
\caption{Figure 2}
\end{figure}

The ordered sets shown in Figure 3 are cycle-free, that is, contain no subset isomorphic to an alternating $2n$-cycle.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure3.png}
\caption{Figure 3}
\end{figure}
The principal result of this paper is

Theorem. Let \(P \) be an ordered set without alternating cycles. Then \(s(P) = w(P) - 1 \).

The case where \(P \) has length two (that is, \(P \) has no three-element chain) is particularly easy to verify. We proceed by induction on the size of \(P \): if \(P \) contains an isolated element \(a \) then \(w(P - \{ a \}) = w(P) - 1 \) and clearly \(s(P) = s(P - \{ a \}) + 1 \). Otherwise, as \(P \) is cycle-free there is an element \(b \) comparable with precisely one other element, say, \(b < c \). Again if \(w(P - \{ b \}) = w(P) - 1 \) then the induction hypothesis applies; otherwise, \(w(P - \{ b \}) = w(P) \) and, indeed, \(w(P - \{ b, c \}) = w(P) - 1 \). Finally, \(s(P) = s(P - \{ b, c \}) + 1 \), so in any case, \(s(P) = w(P) - 1 \).

Before we turn to the proof of the theorem, note from the ordered sets illustrated in Figure 4 that the converse of the theorem cannot hold.

\[
\begin{align*}
\text{Figure 4} \\
s(P_1) &= 2 = w(P_1) - 1 \quad (i = 1, 2)
\end{align*}
\]

Proof of the theorem. We proceed by induction on \(m = w(P) \). Let \(C_1, C_2, \ldots, C_m \) be a sequence of maximal chains of \(P \) such that

\[
P = \bigcup_{i=1}^{m} C_i.
\]

(Such a sequence can always be obtained by extending each of the \(m \) chains in a partition of \(P \) by width-many chains.)

Let \(x, y, z \in C_i \) with \(x < y < z \) and suppose that for some \(j, \{x, y, z\} \cap C_j = \{y\} \). Then some element \(x' \) in \(C_j \) must be noncomparable to \(x \), else the addition of \(x \) would extend \(C_j \); similarly there must be an element \(z' \) of \(C_j \) noncomparable to \(z \). But then \(\{x, z, x', z'\} \) is a 4-cycle, contradicting the hypothesis of the theorem. It follows that, for any \(i \) and \(j \) and any \(y \in C_i \cap C_j \), either \(\{x \in C_i \cup C_j \mid x < y\} \) is a chain or \(\{z \in C_i \cup C_j \mid z > y\} \) is a chain.

For each \(i \), let

\[
P_i = C_i - \bigcup_{j \neq i} C_j.
\]

Then \(P_i \neq \emptyset \) for each \(i = 1, 2, \ldots, m \), for otherwise \(m = w(P) < m \). We now introduce a binary relation \(\rightarrow \) on \(\{C_i \mid i = 1, 2, \ldots, m\} \) as follows: \(C_i \rightarrow C_j \) if there are elements \(x \in P_i \) and \(y \in C_j - C_i \) such that \(x > y \) in \(P \). The definition is motivated by this observation:

if for some \(i \), \(C_i \rightarrow C_j \) for all \(j \) then \(s(P) = w(P) - 1 \).
To prove this let $x = \max(P_i)$, $C = \{y \in C_i \mid y \leq x\}$, and let $P' = P - C$. Then $w(P') = w(P) - 1$ and by the induction hypothesis there is a linear extension L' of P' consisting of a linear sum of $m - 1$ chains of P'. We claim $L = C \oplus L'$ is a linear extension of P; if not, there are elements $y \in C$ and $z \in P' \cap C_j$, for some $j \neq i$, with $y > z$. Hence $z < x$ and since $C_i \leftrightarrow C_j$, it must be that $z \in C_i$; then $z \in C$, an impossibility.

We may therefore suppose that for each i there is some j such that $C_i \rightarrow C_j$. After suitable relabelling, there is a sequence $1, 2, \ldots, n$ of smallest length such that $C_1 \rightarrow C_2 \rightarrow \cdots \rightarrow C_n \rightarrow C_1$.

Choose $x_i \in P_i$ and $y_i \in C_i - C_{i-1}$ with $x_i > y_{i+1}$, for each $i = 1, 2, \ldots, n$ (mod n). Observe that $x_i > y_i$ for each i, $1 \leq i \leq n$. We conclude the proof by verifying that \{x_1, y_1, x_2, y_2, \ldots, x_n, y_n\} must now contain an alternating cycle. Let us suppose that it is not itself a 2n-cycle.

Case (i). Let $x_i > x_j$. Since $x_i \in C_j$ there is some $x > x_j$ in C_j which is incomparable with x_i. Further, since $y_{j+1} \notin C_j$ there is some $y < x_j$ in C_j which is incomparable with y_{j+1}; then (x_i, x, y_{j+1}, y) is a 4-cycle.

Case (ii). Let $y_i = y_j, i \neq j$. Then $C_{i-1} \rightarrow C_j$, contradicting the minimality of n.

Case (iii). Let $y_i < y_j$. If $y_i \in C_j$ then there is $y < y_j$ in C_j noncomparable with y_i, so (x_{j-1}, x_j, y_j, y) is a 4-cycle. If $y_i \in C_j$ then $C_{i-1} \rightarrow C_j$, again contradicting the minimality of n.

It follows that y_i is noncomparable with y_j for each $i \neq j$.

Case (iv). Let $x_i > y_j$, where $j \neq i$ and $j \neq i + 1$. Since y_j is noncomparable with y_i, $y_j \notin C_i$ so $C_i \rightarrow C_j$ which is again impossible.

Case (v). Let $x_i < y_j$. Then $y_i < y_j$ which was already ruled out.

This completes the proof.

An algorithm. Implicit in the proof of the theorem is an algorithm to construct a linear extension L of a cycle-free ordered set P which is optimal in the sense that $s_L(P) = s(P) = w(P) - 1$. The following procedure, though inductive, is based on a single covering $C_1, C_2, \ldots, C_{w(P)}$ of P by maximal chains.

Figure 5
According to the proof of the theorem, in any such covering there is a chain (say, C_i) such that for any $i = 2, 3, \ldots, w(P)$, $C_i \Rightarrow C_i$. Let $c_i = \max(P_i)$, $C'_i = \{x \in C_i \mid x \leq c_i\}$, and $Q = P - C'_i$. Then Q is covered by the chains $Q \cap C_2, \ldots, Q \cap C_{w(P)}$, and by inductive use of this algorithm Q has a linear extension

$$L' = C'_2 \oplus C'_3 \oplus \cdots \oplus C'_{w(P)}$$

with $s_L(Q) = w(Q) - 1$, where $C'_i \subset C_i$ for each $i = 2, 3, \ldots, w(P)$. Then $L = C'_1 \oplus L'$ is a linear extension of P for which $s_L(P) = w(Q) = w(P) - 1$ as required.

The algorithm is illustrated in Figure 5 for a particular cycle-free ordered set of width three.

REFERENCES

DEPARTMENT OF MATHEMATICS, EMORY UNIVERSITY, ATLANTA, GEORGIA 30322

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALGARY, CALGARY, T2N 1N4, ALBERTA, CANADA