Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Minimizing setups for cycle-free ordered sets
HTML articles powered by AMS MathViewer

by D. Duffus, I. Rival and P. Winkler PDF
Proc. Amer. Math. Soc. 85 (1982), 509-513 Request permission

Abstract:

A machine performs a set of jobs one at a time subject to a set of precedence constraints. We consider the problem of scheduling the jobs to minimize the number of "setups".
References
  • G. Chaty, M. Chein, P. Martin, and G. Petolla, Some results about the number of jumps in acircuit digraphs, Proceedings of the Fifth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1974), Congressus Numerantium, No. X, Utilitas Math., Winnipeg, Man., 1974, pp. 267–279. MR 0360338
  • Michel Chein and Pierre Martin, Sur le nombre de sauts d’une forêt, C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A159–A161 (French). MR 302489
  • M. Chein and M. Habib, The jump number of dags and posets: an introduction, Ann. Discrete Math. 9 (1980), 189–194. MR 597371, DOI 10.1017/s0001867800043305
  • O. Cogis and M. Habib, Nombre de sauts et graphes série-parallèles, RAIRO Inform. Théor. 13 (1979), no. 1, 3–18, ii (French, with English summary). MR 525454, DOI 10.1051/ita/1979130100031
  • R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. (2) 51 (1950), 161–166. MR 32578, DOI 10.2307/1969503
  • J. Kuntzmann and A. Verdillon, Recherche d’un ordre total minimal compatible avec un ordre partial donné, Séminaire Institut de Mathématique de Grenoble, 1971. W. R. Pulleyblank, On minimizing setups in precedence constrained scheduling, Discrete Appl. Math, (to appear).
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06A10
  • Retrieve articles in all journals with MSC: 06A10
Additional Information
  • © Copyright 1982 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 85 (1982), 509-513
  • MSC: Primary 06A10
  • DOI: https://doi.org/10.1090/S0002-9939-1982-0660592-3
  • MathSciNet review: 660592