A criterion for finite module type
HTML articles powered by AMS MathViewer
- by Christine Bessenrodt
- Proc. Amer. Math. Soc. 85 (1982), 520-522
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660595-9
- PDF | Request permission
Abstract:
The following result is proved: If a $p$-block of a finite group has only finitely many indecomposable liftable modules with the defect group of the block as a vertex or if it has only finitely many indecomposable periodic modules, then the block is of finite module type.References
- J. L. Alperin, Periodicity in groups, Illinois J. Math. 21 (1977), no. 4, 776–783. MR 450381
- David W. Burry, The distribution of modular representations into blocks, Proc. Amer. Math. Soc. 78 (1980), no. 1, 14–16. MR 548074, DOI 10.1090/S0002-9939-1980-0548074-9
- Larry Dornhoff, Group representation theory. Part A: Ordinary representation theory, Pure and Applied Mathematics, vol. 7, Marcel Dekker, Inc., New York, 1971. MR 0347959
- J. A. Green, Vorlesungen über Modulare Darstellungstheorie endlicher Gruppen, Vorlesungen aus dem Mathematischen Institut Giessen, Heft 2, Universität Giessen, Mathematisches Institut, Giessen, 1974 (German). An der Universität Giessen im Sommersemester 1974; With an English acknowledgment; Manuskript: Wolfgang Hamernik. MR 0360788
- Wolfgang Hamernik, Indecomposable modules with cyclic vertex, Math. Z. 142 (1975), 87–90. MR 364413, DOI 10.1007/BF01214850
- Alex Heller, Indecomposable representations and the loop-space operation, Proc. Amer. Math. Soc. 12 (1961), 640–643. MR 126480, DOI 10.1090/S0002-9939-1961-0126480-2
- R. M. Peacock, Ordinary character theory in a block with a cyclic defect group, J. Algebra 44 (1977), no. 1, 203–220. MR 424922, DOI 10.1016/0021-8693(77)90175-2
- L. L. Scott, Modular permutation representations, Trans. Amer. Math. Soc. 175 (1973), 101–121. MR 310051, DOI 10.1090/S0002-9947-1973-0310051-1
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 520-522
- MSC: Primary 20C20
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660595-9
- MathSciNet review: 660595