A NOTE ON PREPROJECTIVE PARTITIONS OVER HEREDITARY ARTIN ALGEBRAS

GORDANA TODOROV

Abstract. If \(\Lambda \) is an artin algebra there is a partition of \(\text{ind} \, \Lambda \), the category of indecomposable finitely generated \(\Lambda \)-modules, \(\text{ind} \, \Lambda = \bigcup_{i=0}^{\infty} P_i \), called the preprojective partition. We show that \(P_i \) can be easily constructed for hereditary artin algebras, if \(P_{i-1} \) is known: \(A \) is in \(P_i \) if and only if \(A \) is not in \(P_{i-1} \) and there is an irreducible map \(B \to A \), where \(B \) is in \(P_{i-1} \).

If \(\Lambda \) is a hereditary artin algebra V. Dlab and C. M. Ringel called an indecomposable module \(X \) preprojective if there exist an indecomposable projective \(P \) and an integer \(j \) such that \(X = \text{Tr} \, D^jP \), where \(\text{Tr} \) denotes the transpose and \(D \) the ordinary duality. M. Ausländer and S. Smalø gave a definition of preprojective modules for arbitrary artin algebras, which in the hereditary case coincides with the previous one. They proved [2] that for any artin algebra there exist unique sets of isomorphism classes of indecomposable modules \(P_i, i \in N \cup \{ \infty \} \) such that:

(i) \(P_0 \) consists of the indecomposable projective \(\Lambda \)-modules.
(ii) \(P_n \) is finite for each \(n < \infty \) and is minimal with respect to the property that each indecomposable module not in \(\bigcup_{i=0}^{n-1} P_i \) is a quotient of a direct sum of modules from \(P_n \).
(iii) \(P_\infty \) is the collection of indecomposable modules not in \(\bigcup_{i<\infty} P_i \). A module is called preprojective if it is in \(\bigcup_{i<\infty} P_i \).

One of the basic tools in describing preprojective partitions is irreducible maps defined by M. Auslander and I. Reiten in [1]. A nonzero map \(f: M \to N \) is irreducible if \(f \) is neither a splittable monomorphism nor a splittable epimorphism and, given any factorization of \(f \),

\[
\begin{array}{ccc}
M & \xrightarrow{f} & N \\
\downarrow{g} & & \downarrow{h} \\
L & & \rightarrow \\
\end{array}
\]

then either \(g \) is a splittable monomorphism or \(h \) is a splittable epimorphism.

The following result about preprojective modules is true for arbitrary artin algebras [3].

(a) \(A \in P_0 \) if and only if \(A \) is an indecomposable projective module.
(b) \(A \in P_i \) if and only if \(A \cong \text{Tr} DB \) for some summand \(B \) of the radical of \(\Lambda \) as left module.

(c) If \(A \in P_{n+1} \), then there exist a \(B \) in \(P_j \) for some \(j < n \) and an irreducible morphism \(B \rightarrow A \).

This result gives a complete description of the modules in \(P_0 \) and \(P_1 \), and a way to find \(P_n \), \(n < \infty \), when all the \(P_j \), \(j < n \) are given, which is described in the same paper. First look at the set \(A_n \) of all indecomposable modules \(A \) such that there exists an irreducible morphism \(f: B \rightarrow A \) for some \(B \) in \(\bigcup_{i<n} P_i \), \(\bigcup_{i<n} P_j \) is finite so the set \(A_n \) will also be finite \([1]\). Further it is possible to prove that \(A_n \) is a cover for \(\text{ind } \Lambda = \bigcup_{i<n} P_i \) \([2]\), and therefore it contains a cover with a minimal number of elements which then is the unique minimal cover \(P_{n+1} \) of \(\text{ind } \Lambda = \bigcup_{i<n} P_i \). To determine the minimal cover one can start with any \(A \) in \(A_n \) and see if \(A_n \smallsetminus \{ A \} \) is a cover for \(A_n \). \(A \) is then in the minimal cover \(P_{n+1} \) if and only if \(A_n \smallsetminus \{ A \} \) is not a cover for \(A_n \). Hence, by going through all modules in \(A_n \) in an arbitrary order one can find the members of \(P_{n+1} \).

If \(\Lambda \) is a hereditary artin algebra, instead of condition (c), we give necessary and sufficient conditions for a module \(A \) to be in \(P_n \); \(A \) is in \(P_n \) if and only if it is not in \(P_{n-1} \) and there is an irreducible map \(B \rightarrow A \), where \(B \) is in \(P_{n-1} \). This way the construction described before becomes much simpler: it is enough to consider the set \(A_n \) and exclude all modules that are in \(P_{n-1} \) in order to obtain \(P_n \), which means just by looking at the modules and without considering maps and possible covers we can determine which modules are in \(P_n \).

Dually, one can define preinjective partitions and the dual statements hold. D. Zacharia applied these results to obtain some interesting results about preprojective and preinjective partitions for hereditary and stably equivalent to hereditary artin algebras \([4]\).

Proposition 1. Let \(\Lambda \) be a hereditary artin algebra. Then \(Y \) is in \(P_n \) if and only if both of the following conditions hold:

(a) For every irreducible map \(f: X \rightarrow Y \) with \(X \) indecomposable, \(X \) is in \(P_{n-1} \cup P_n \), and

(b) there is an indecomposable \(X_{n-1} \) in \(P_{n-1} \) and an irreducible map \(f: X_{n-1} \rightarrow Y \).

Proof. (a) The proof will be by induction on \(n \). If \(n = 0 \), it is clear since \(\Lambda \) is hereditary. Suppose it is true for \(j < n \). Let \(A_{n+1} \) be in \(P_{n+1} \) and suppose \(X \rightarrow A_{n+1} \) is irreducible, and \(X \) is indecomposable. Suppose \(X \) is in \(P_t \) for some \(t \leq n - 1 \). Consider an almost split sequence

\[
0 \rightarrow C \rightarrow X \rightarrow A_{n+1} \rightarrow 0.
\]

Let \(B'_{n-1} \) be a summand of \(B \) containing all summands of \(B \) which are in \(\bigcup_{k<n-1} P_k \), and \(B' \) is determined by \(B = B'_{n-1} \cup B' \). Then \(B' \) has no summands from \(\bigcup_{k<n-1} \).

So (1) looks like:

\[
0 \rightarrow C \rightarrow X \rightarrow B'_{n-1} \cup B' \rightarrow A_{n+1} \rightarrow 0.
\]
Since P_n is a generating set for $\Lambda - \bigcup_{k<n} P_k$, there exists an epimorphism $f: \Pi Y_n \rightarrow A_{n+1}$ with all Y_n in P_n.

Claim. If X is in $\bigcup_{k<n} P_k$, then $\text{Hom}_\Lambda(Y_n, X) = 0$.

Proof of the claim. Suppose X is in P_{n-1}. Call it X_{n-1}. Let f be a nonzero map $Y_n \rightarrow X_{n-1}$. We may assume that X_{n-1} is not projective. Consider an almost split sequence $0 \rightarrow K \rightarrow \Pi Z_k \rightarrow X_{n-1} \rightarrow 0$. By induction hypothesis all Z_k's are in $P_{n-2} \cup P_{n-1}$. So f factors through some Z_k which is either in P_{n-2} or P_{n-1}. Clearly, if Z_k is in P_{n-1}, then irreducible map $Z_k \rightarrow X_{n-1}$ is a monomorphism. Applying the same argument either we reach some module in $\bigcup_{k<n} P_k$ which is isomorphic to Y_n, which is impossible since Y_n is in P_n, or we have an infinite chain of irreducible monomorphisms in the same P_k, which is again impossible, or we have a map from Y_n to a projective, which is impossible since Λ is hereditary. This finishes proof of the claim.

Therefore $\text{Hom}_\Lambda(Y_n, X) = 0$ and $\text{Hom}_\Lambda(Y_n, B'_{n-1}) = 0$. So f factors through B'. Thus $B' \rightarrow A_{n+1}$ is an epimorphism, which implies that $C \rightarrow X$ is an epimorphism. Since X is in P_n, the module C cannot be in P_n, otherwise it would not be a minimal generating set, and by the induction hypothesis C cannot be in $\bigcup_{k<n} P_k$. Thus C is in P_{n-1}. Then we will denote C by C_{n-1}. (Similarly we will write $A = X_i$ since X is in P_n.) So the sequence (1) is

\[0 \rightarrow C_{n-1} \rightarrow B'_{n-1} \rightarrow A_{n+1} \rightarrow 0 \]

Not all summands of B' can be in $\bigcup_{k>n+1} P_k$, otherwise A_{n+1} would not be in the minimal generating set P_{n+1}. Therefore there exists a summand of B' which is in P_n. Call it B_n. But then from the above sequence we have an irreducible map $C_{n-1} \rightarrow B_n$, which is a contradiction to the induction hypothesis, since $t - 1 < n - 1$.

(*) Therefore if there is an irreducible map $X_i \rightarrow A_{n+1}$, where X_i is in P_t, then $t \geq n$.

Now suppose there is an irreducible map $X_i \rightarrow A_{n+1}$, where X_i is in P_t and $t > n + 1$. Consider an almost split sequence

\[0 \rightarrow C \rightarrow X_i \rightarrow B_n \rightarrow A_{n+1} \rightarrow 0 \]

By condition (c) which was stated for arbitrary artin algebras there exists a summand of B which is in P_k with $k < n$. But by (*) $k \geq n$, so $k = n$. So the above sequence looks like $0 \rightarrow C \rightarrow X_i \rightarrow B_n \rightarrow A_{n+1} \rightarrow 0$ where $B = B' \cap B_n$ and B_n is in P_n. Since there is an irreducible map $C \rightarrow B_n$, by the induction hypothesis, C is in P_n.

\[\text{Diagram:} \]

\[\begin{array}{ccc}
0 & \rightarrow & C_{n-1} \\
& & \downarrow \\
& & B'_{n-1} \\
& & \downarrow \\
& & A_{n+1} \\
& & \downarrow \\
& & 0
\end{array} \]
with $n - 1 \leq s \leq n$. We denote C by C_s. Consider now an almost split sequence for X_i:

$$
\begin{tikzcd}
 & D \arrow[rd] & \\
0 \arrow[ru] & E \arrow[r] & X_i \arrow[r] & 0 \\
 & C_s \arrow[lu]
\end{tikzcd}
$$

Since $t \geq n + 2$, there exists an epimorphism $f : Y \to X_i$ with all summands of Y in P_{n+1}. Let D^1 be a summand of D containing all summands which are in $\bigcup_{k \leq n} P_k$. Let $D = D^1 \coprod D^2$. Then $\text{Hom}_A(Y, D^1) = 0$, and also $\text{Hom}_A(Y, C_s) = 0$. So f factors through D^1 and $D^1 \to X_i$ is an epimorphism. Thus the previous sequence looks like

$$
\begin{tikzcd}
 & D^1 \arrow[rd] & \\
0 \arrow[ru] & E \arrow[r] & X_i \arrow[r] & 0 \\
 & C_s \arrow[lu]
\end{tikzcd}
$$

So there exists a summand D_{j_1} of D^1, with D_{j_1} in P_{j_1} with $j_1 < t$ since X_i is in P_t which is a minimal generating set. Also $n + 1 \leq j_1$ since D_{j_1} is a summand of D^1. So $n + 1 \leq j_1 < t$. Since the map $E \to C_s$ is an epimorphism, by the induction hypothesis E is in P_{s-1}. Denote $E = E_{s-1}$. Then there is an irreducible map $E_{s-1} \to D_{j_1}$. If $j_1 = n + 1$, then by (*) $s - 1 \geq n$, which is a contradiction since $s \leq n$. Therefore $n + 1 < j_1 < t$.

Consider now an almost split sequence:

$$
\begin{tikzcd}
 & D^2 \arrow[rd] \arrow[ru] & \\
0 \arrow[r] & E_{s-2} \arrow[r] & D^1 \arrow[r] & D_{j_1} \arrow[r] & 0 \\
 & E_{s-1} \arrow[lu] &
\end{tikzcd}
$$

where D^2 has no summand from $\bigcup_{j \leq n} P_j$ and D^2 contains all such summands except for E_{s-1}. Then by the argument as before, $D^2 \to D_{j_1}$ is an epimorphism, $E_{s-2} \to E_{s-1}$ is an epimorphism, and E_{s-2} is in P_{s-2}. Using the same argument that we used to get D_{j_2}, we can show that there is a summand D_{j_2} of D^2 with D_{j_2} in P_{j_2} and $n + 1 < j_2 < j_1$. This way we obtain a chain of decreasing positive integers, which are all larger than $n + 1$, giving a contradiction.

(b) This now follows from part (a) and the condition (c) stated for arbitrary artin algebras. □
Corollary 2. Let Λ be a hereditary artin algebra and let $A_n = \{X \text{ in ind } \Lambda \mid \text{there exists an irreducible map } A_{n-1} \rightarrow X \text{ with } A_{n-1} \text{ in } P_{n-1}\}$. Then $P_n = A_n - P_{n-1}$, for $n \geq 1$.

Proof. Suppose Y is in P_n. Then if $X \rightarrow Y$ is irreducible, X is in $P_n \cup P_{n-1}$ by Proposition 1(a), and by (b) there exist X_0 in P_{n-1} and an irreducible map $X_0 \rightarrow Y$. So Y is in A_n, and since P_i's are disjoint, Y is in $A_n - P_{n-1}$. Now suppose Y is in $A_n - P_{n-1}$. Then there exists an irreducible map $A_{n-1} \rightarrow Y$ with A_{n-1} in P_{n-1}. Then by Proposition 1, Y is in $P_{n-1} \cup P_n$, and therefore Y is in P_n. □

Corollary 3. Suppose X is in P_n. Then there exists a chain of irreducible maps $X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_j = X$ with X_0 projective, and the shortest such chain is of length n.

Proof. If X is in P_n, then there exist a module X_{n-1} in P_{n-1} and an irreducible map $X_{n-1} \rightarrow X$. Applying the same argument, we obtain a chain $X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_k \rightarrow X$, with X_k in P_k for all $0 \leq k < n - 1$. Let $X_0' \rightarrow X_1' \rightarrow \cdots \rightarrow X_j' = X$ be the shortest chain of irreducible maps with X_0' in P_0. Then by Proposition 1 if X_j' is in P_j, the module X_{j+1}' is in $P_j \cup P_{j+1}$. So we have X_j' is in $P_0 \cup P_1$, and X_k' is in $\bigcup_{i<k,j} P_i$ for all $k \leq j$. So X_j' is in $\bigcup_{i<j} P_i$, and since $X_j' = X$ which is in P_n, it follows that $n < j$. But j was chosen to be minimal, so $n = j$. □

To illustrate the results, we give an example of a hereditary artin algebra, the first few classes of the partition $\bigcup P_i$, and the irreducible maps between the modules in these classes: let k be a field, the subring of 8×8 lower triangular matrix ring, given by

$$
\Lambda = \begin{bmatrix}
 k & 0 & 0 & k & k & k & k & k \\
 0 & k & 0 & 0 & 0 & 0 & k & k \\
 0 & 0 & k & 0 & 0 & 0 & k & k \\
 k & k & k & k & k & k & k & k \\
\end{bmatrix}
$$

where the P_i's are indecomposable right projective Λ-modules. This ring corresponds to the ring given by the diagram

$$
\begin{array}{cccccccc}
 1 & \rightarrow & 4 & \rightarrow & 3 & \rightarrow & 5 & \rightarrow & 8 & \rightarrow & 7 & \rightarrow & 6 & \rightarrow & 2 \\
 \downarrow & & \downarrow \\
 9 & & 9 & & 9 & & 9 & & 9 & & 9 & & 9 & & 9 \\
\end{array}
$$
This ring is of infinite representation type, and a part of the Auslander-Reiten graph looks like

where Δ denotes $\text{Tr } D$.

REFERENCES

DEPARTMENT OF MATHEMATICS, NORTHEASTERN UNIVERSITY, BOSTON, MASSACHUSETTS 02115