On the uniform asymptotic stability in functional-differential equations
HTML articles powered by AMS MathViewer
- by L. Z. Wen
- Proc. Amer. Math. Soc. 85 (1982), 533-538
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660599-6
- PDF | Request permission
Abstract:
We consider a system of functional differential equations $x’(t) = F(t,{x_t})$ and obtain conditions on a Liapunov functional to insure the uniform asymptotic stability of the zero solution.References
- T. A. Burton, Uniform asymptotic stability in functional differential equations, Proc. Amer. Math. Soc. 68 (1978), no. 2, 195–199. MR 481371, DOI 10.1090/S0002-9939-1978-0481371-5
- Taro Yoshizawa, Stability theory by Liapunov’s second method, Publications of the Mathematical Society of Japan, vol. 9, Mathematical Society of Japan, Tokyo, 1966. MR 0208086 B. S. Razumikhin, Application of Liapunov’s method to problems in the stability of systems with a delay, Avtomat. i Telemeh. 21 (1960), 740-749. (Russian)
- Junji Kato, On Liapunov-Razumikhin type theorems for functional differential equations, Funkcial. Ekvac. 16 (1973), 225–239. MR 355272
- Jack Hale, Theory of functional differential equations, 2nd ed., Applied Mathematical Sciences, Vol. 3, Springer-Verlag, New York-Heidelberg, 1977. MR 0508721, DOI 10.1007/978-1-4612-9892-2
- N. N. Krasovskiĭ, Stability of motion. Applications of Lyapunov’s second method to differential systems and equations with delay, Stanford University Press, Stanford, Calif., 1963. Translated by J. L. Brenner. MR 0147744
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 533-538
- MSC: Primary 34K20
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660599-6
- MathSciNet review: 660599