ISOMETRIES OF $A_C(K)$

T. S. S. R. K. RAO

Abstract. We completely describe isometries of $A_C(K)$, when K is a compact Choquet simplex, using facially continuous functions on the extreme boundary.

1. Introduction. Let K be a compact convex set in a locally convex space and denote by $E(K)$ the set of extreme points of K and by $A_C(K)$ the continuous complex-valued affine functions on K, equipped with the supremum norm.

We first describe a class of isometries for $A_C(K)$ when K is any compact convex set and give a sufficient condition on an isometry, in terms of facially continuous functions on $E(K)$, so that the isometry in question is in the prescribed class and then deduce that when K is a Choquet simplex, the class of isometries considered, completely describes the isometries of $A_C(K)$.

2. Notations and definitions. For the concepts and results of convexity theory used here we cite [1].

A set $D \subseteq E(K)$ is said to be facially closed if there exists a closed split face F of K such that $E(F) = D$. The sets D form the closed sets of a topology on $E(K)$ called the facial topology.

Let C denote the complex plane and Γ, the unit circle in C. For a probability measure μ, let $r(\mu)$ denote the resultant of μ and $\text{Supp } \mu$ denote the topological support of μ.

3. Description of isometries. Following the notations of [1], we denote by $Z(A_C(K))$ the set of elements $b \in A_C(K)$ such that for every $a \in A_C(K)$ there exists $c \in A_C(K)$ satisfying

$$c(x) = a(x) \cdot b(x) \quad \forall x \in E(K).$$

Since for any $b \in Z(A_C(K))$, real and imaginary parts of b are in $Z(A(K))$, using Corollary II.7.4 and Theorem II.7.10 of [1], we can easily see that for $b \in A_C(K)$, b is in $Z(A_C(K))$ if and only if $b | E(K) \to C$ is continuous in the facial topology.

Let $Q: K \to K$ be an onto affine homeomorphism and let $a_0 \in Z(A_C(K))$ be such that $|a_0| = 1$ on $E(K)$. Define $\Phi: A_C(K) \to A_C(K)$ by $\Phi(a) = c$, where c is the unique element of $A_C(K)$ such that $c(x) = a(Q(x)) \cdot a_0(x) \forall x \in E(K)$.

It is easy to see that Φ is an onto isometry and $\Phi(1) = a_0$.

Received by the editors May 6, 1981 and, in revised form, August 20, 1981.

1980 Mathematics Subject Classification. Primary 46A55, 46E15.

Key words and phrases. Choquet simplexes, isometries, affine homeomorphisms, facially continuous functions.

© 1982 American Mathematical Society

544
Theorem 3.1. Let \(\Phi: A_c(K) \to A_c(K) \) be any onto isometry. Assume
\[
\Phi(1) \in Z(A_c(K)).
\]
Then there exists an affine homeomorphism \(Q \) from \(K \) onto \(K \) such that
\[
\Phi(a)(x) = a(Q(x))\Phi(1)(x) \quad \forall x \in E(K).
\]

Proof. Define \(\delta: K \to A(K)^* \) by \(\delta(x)(a) = a(x) \) \(\forall a \in A_c(K) \) and \(x \in K \). It is well known that \(\delta \) is an affine homeomorphism of \(K \) onto \(\{ f \in A_c(K)^*: \| f \| = \| f(1) \| = 1 \} \), with \(w^* \)-topology. Since \(\Phi^*: A_c(K)^* \to A_c(K)^* \) is an onto isometry and a \(w^* \)-homeomorphism it is easy to see that \(\Phi^*(\delta(E(K))) \subseteq \Gamma \cdot \delta(E(K)) \).

Let \(x \in E(K) \). Since \(A_c(K) \) separates points of \(K \) and \(1 \in A_c(K) \), there exist unique \(x' \in E(K) \) and \(t \in \Gamma \), such that \(\Phi^*(\delta(x)) = t \cdot \delta(x') \). Moreover
\[
\Phi^*(\delta(x))(1) = \delta(x)(\Phi(1)) = \Phi(1)(x) = t.
\]
Hence \(\Phi(1) \) is of modulus 1 on \(E(K) \). Let \(\Phi(1) = u + iv \), \(u, v \in A(K) \) (real-valued functions in \(A_c(K) \)). Then since \(Z(A_c(K)) \) is selfadjoint, \(\Phi(1) = u - iv \) is in \(Z(A_c(K)) \). Define now \(T: A_c(K) \to A_c(K) \) by
\[
T(a)(x) = \Phi(a)(x) \cdot \Phi(1)(x) \quad \forall x \in E(K).
\]
Since \(|\Phi(1)| = 1 \) on \(E(K) \), it follows from the remarks in the beginning of this section that \(T \) is a well-defined, onto isometry. Moreover, \(T(1) = 1 \). It is easy to see that \(T^* \) maps \(\delta(K) \) onto \(\delta(K) \) and \(Q = \delta^{-1} \circ T^* \circ \delta \) is an affine homeomorphism of \(K \) onto \(K \). That \(\Phi(a)(x) = a(Q(x)) \cdot \Phi(1)(x) \) \(\forall x \in E(K) \) follows from (*) and the definition of \(T \).

Definition (Effros). Say a closed set \(D \subseteq K \) is a dilated set if for any maximal measure \(\mu \) with \(r(\mu) \subseteq D \), \(\text{Supp} \ \mu \subseteq D \).

Proposition 3.2. Let \(K \) be a compact Choquet simplex and let \(a_0 \in A_c(K) \) and \(|a_0| = 1 \) on \(E(K) \). Then \(a_0 \in Z(A_c(K)) \).

Proof. In view of the results quoted in the beginning of this section it is sufficient to show that \(a_0 | E(K) \) is facially continuous.

For a closed set \(B \subseteq T \), let \(B' = \{ x \in \overline{E(K)}: a_0(x) \in B \} \). We claim that the closed set \(B' \) is a dilated set. Let \(\mu \) be a maximal probability measure with \(x_0 = r(\mu) \subseteq B' \). Since
\[
1 = |a_0(x_0)| \leq \int_{E(K)} a_0 \, d\mu = \int_{E(K)} |a_0| \, d\mu \leq 1,
\]
we get that \(a_0 \equiv a_0(x_0) \) on \(\text{Supp} \ \mu \) and hence \(\text{Supp} \ \mu \subseteq B' \).

It now follows from a result of [2] that \(F \), the closed convex hull of \(B' \), is a split face and hence \(\{ x \in E(K): a_0(x) \in B \} = F \cap E(K) \) is a facially closed set.

Remark. When \(K \) is a simplex, \(a \in A_c(K) \) is an extreme point of the closed unit ball of \(A_c(K) \) iff \(|a| = 1 \) on \(E(K) \) iff \(a \in Z(A_c(K)) \) and is an extreme point of the closed unit ball of \(Z(A_c(K)) \).

Corollary 3.3. If \(K \) is a compact Choquet simplex then for any onto isometry \(\Phi \) of \(A_c(K) \), \(\exists \) an affine homeomorphism \(Q \) of \(K \) such that
\[
\Phi(a)(x) = a(Q(x)) \cdot \Phi(1)(x) \quad \forall x \in E(K).
\]
Proof. We have observed in the proof of Theorem 3.1 that $|\Phi(1)| = 1$ on $E(K)$, hence the conclusion follows from Corollary 3.2 and Theorem 3.1.

Remark. These results generalize the classical Banach-Stone theorem dealing with the isometries of $C_c(X)$, where X is a compact Hausdorff space; also generalized is the work of A. J. Lazar [3] on isometries of $A(K)$.

4. Example. We end by giving a simple example of a nonsimplicial compact convex set K and an isometry Φ of $A_c(K)$ which is not of the form described in Theorem 3.1.

Let K be the unit square in \mathbb{R}^2 centred at $(0,0)$, so

$$E(K) = \{(x, y) : |x| = 1 = |y|\} \cdot K$$

has no proper split faces and hence $Z(A_c(K)) = \{\alpha \cdot 1 : \alpha \in \mathbb{C}\}$. Any $f \in A_c(K)$ is of the form $f(x, y) = ax + by + c$ where $a, b, c \in \mathbb{C}$. Define $\Phi(f)(x, y) = cx + by + a$. Now $\|f\| = \max |a \pm b \pm c|$ and $\|\Phi(f)\| = \max |c \pm b \pm a|$ hence Φ is an isometry. It is obvious that Φ is onto. But $\Phi(1) = x$, a nonconstant. Hence Φ is not of the form in Theorem 3.1.

Acknowledgement. I thank my supervisor Professor A. K. Roy and the referee for simplifying the proof of Theorem 3.1.

References