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ON FOURIER INTEGRAL OPERATORS

A. EL KOHEN

ABSTRACT. We consider operators of the form: f^^Etp^dt, where Ft

is a 1-parameter family of Fourier integral operators and p(t) dt a tempered

distribution on the real line and show that these operators are sums of pseudo-

differential and Fourier integral operators. Here, we give the typical case where

p(t)dt = p.v.{l/i}. An application to singular integrals on variable curves is

given.

THEOREM. Let Ft be a 1-parameter family of local Fourier integral oper-

ators such that the kernel of Ft has an integral representation of the form:

/r3 eu^x,y,t'e^a{x, y, t, 6) d6 with a and d> depending smoothly on t, a (resp. <p) a sym-

bol in the class Sj 0 ie-: \^x^y^t^ea\ 5i Ca,/3,fc,-y(l + l#l)—'"*' (resp. nondegenerate

phase function) and a(x, y, 0,6) = 1 (resp. <p(x, y, 0,6) = (x — y) • 6). Furthermore,

we assume that <pe X <j>g ^ 0; then the operator T = /_x Ft dt/t can be written in

the form T = P -\- F where P is a ip.d.o. with symbol in Sj/2,i/2 an^ F a Fourier

integral operator with amplitude in S^^2.

The proof follows from the asymptotic expansion of the function

w(x, y, 6) = B(0) f   ¿H+tMafa y, t, 0y%
7-1 t

where S is a C°° function on R2, identically zero near the origin and homogeneous

of degree zero for all |0| > 1. For simplicity, we will not, in the sequel, make

mention of B.

We, now, use Taylor expansion to have:

<j>(x, y,t,6) = (x-y)-6 + tv(x, y, 6) + t2w(x, y, t, 0)/2

where v = v(x, y, 0) = <p\x, y, 0,0). We will also write w = w(x, y, 0) = d>(x, y, 0,0).

From the hypothesis, we have vg X wg ^ 0; hence using the homogeneity of v

and w, for any (in, 2/o> #o)> there exists a conic neighborhood K X T of (zn, Vo, #o)

on which either \v(x,y,0)\ > a\0\ or \w(x,y,0)\ > b\0\ where a,b are some positive

constants depending only on K X T. We consider separately the two types of cones.

We let
Ti = {0 G R2 : v(x, y, 0) > a\0\ for all (x, y) G K),

r2 = {0 G R2 : w(x, y, 0) > b\6\ for all (x, y) G K).

The two other cones can be considered in a similar fashion.
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We first consider r2,

LEMMA l.   The symbol

2

<7i = / exp I itv + — w(x, y, t, 0) \a(x, y, t, 0)—
7|t|<i/V5J {2 ) t

belongs to S°1/2il/2(K X T2).

PROOF. We write

f r     . t2w\dt . _

7|t|<i/v^       I 2  J I

where

Ei= J exp i ¿to + — u> M exp j ¿—(tu(x, 3/, i, 0) — w) \a(x, y, t, 6) — 1J

=-Liexp r^H(exp Ww{t,^)lw ~ l)}\^) ~l)exp fë!dí

where w(í) = iu(x, y, t, 6) and a(í) = 0(1, y, t, 0). We then have

(1) eitv/^ belongs to S°1/21/2(K X T2) uniformly in t, \t\ < 1,

(2) w(t/y/w)lw belongs to S\0(K X T2) uniformly in t, \t\ < 1.   Also a —

a(t/y/w) verifies:

dt

T

\daxd%dktd2a\ < ca,ß,kn(l + \0\)-M+kW

and

I j(exp|iC(ti/(t/>/w)/ti; - l)}a(i/v^) - l)| < (const)(l + |0|)-1/2

on K X IV   Thus l(exp{i^(w(t/y/w)/w — l)}a(ty/w) — 1) and therefore Elt

verifies the conclusion of Lemma 1.

For oi — Ei, we have

o~i—Ei=   I        eltv^-dt = I        expof->
J\t\<i * 7|t|<i        [   ^J

dt—
t

(     v  x exp|t^ I — 1

exp< it->-dt = an -\- ai2-f   J*
\/w)

an is easily seen to be in S°/21/2(K X T2) since v/y/w is in S\(2 1/2(K X T2) and

\(ext  — 1) is a smooth function. For on, we write

tfii =       ^du = W^|

from which one deduces that on belongs to S°/21/2(K X T2). This completes the

proof of Lemma 1.
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We now wish to estimate,

•>-/.* e*^y^a(x,y,t,0)^.
7i/vAu<|t|<i t

We let t(x, y, 0) be such that <f>(x, y, t(x, y, 0), 0) = 0. From the hypothesis we have

<p(x, y, t(x, y, 0), 0) =¿ 0. Also, t(x, y, 0) is clearly homogeneous of degree 0 in 6.

LEMMA 2.   The operator corresponding to <r2 is a Fourier integral operator with

phase function 0(x, y, 6) = <p(x, y, t(x, y, 0), 0) and amplitude in S~^^2(K X T2).

PROOF. We use the stationary phase method to write the full expansion of ct2

whose first term is

ein/4   ¿UKx.y.t(x.v.S).9)  a(x,y,t(x,y,0),0)

t{X,y'e) yj4(x,y,t(x,y,0),0)

Clearly # = <f>(x,y,t(x,y,0),0) is homogeneous of degree 1 in 0.   Also from

4>(x, y, t(x, y, 0), 0) = 0, we see that

<t>x = <l>x(x, y, t, 0)\t=ttXtytg),      <j>g = 4>g(x, y, t, 6)\t=t(Xiytg),

4>x6 = <t>xe(x, y, t, 0)\t=t(x,y,6)

which shows that 0 is nondegenerate since </> is. Also from <j>(x, y, t(x, y, 0), 0) = 0

we have ¡f>x + <j>tx = 0; hence tx = —4>/4>; in particular tx is bounded on K X T2.

Similarly for ty and all higher derivatives in x and y of t(x, y, 0). Now, it is clear

that
1        a(x, y, t(x, y, 0), 6)

t&y'V yji(x,y,t(x,y,0),6)

belongs to S~\'2(K X T2). The expansion given by the stationary phase method

gives an asymptotic expansion of the amplitude (use formula 2.14, p. 431, [2] with

p = 1 f(t) = d>(x, y, t, <f>) and g(t) = a(t)/t and the fact that t(x, y, 6) stays away

from 0 on K X T2).

We now consider r1;

LEMMA 3.   The symbol

vi= I exp < itv + — w(t) >a(t)—
7|t|<i/v^       \ 2    WJ  wt

belongs to S\/21/2(K X Ti).

PROOF. We write

f                   L     ,  t2   \dt,„
vi = / exp<itv-\- — w}-r-Fi

J\t\<lfy/v \ 2      /  t    ̂

where

T^i = j   <i      exp|iiv + -wUexpli-(w(x,y,t,6) — w)\a(x,y,t,6) — l\j

•oí i,»—,ö)-ljeit3/2di
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which is easily seen to be in S^~^2(K X Ti) (see similar argument for Ei).

For Vi — Fi, we have

Vi — Fi= I       expl ity/v + -r-\—
7|ti<i        I 2 v I t

= /       e^ + ™f       e-^W':-ltdt.
J\t\<i t       v J\t\<i t2*

Both terms are clearly in S°,21,2(K X Ti) which finishes the proof of Lemma 3.

We now let Vo(") be a smooth function, x/j0(—u) = V>o(u), V'o = 1 for —* <

u < A and ^o = 0 for |u| > 1 and put ^i = 1 — Vo- The conclusion of Lemma 3

is clearly also valid for

u\ =        exp \ itv + — w(x, y, t, 6) \a(x, y, t, 0)il>o(ty/v)—.
7-1        [ 2 J t

LEMMA 4.   The operator corresponding to

f1 ( t2 I dt
i/2 = I    exp I itv + —w(x, y, t, 6) \a(x, y, t, 0)ipi(ty/v)—

is a Fourier integral operator with phase function equal to </>(x, y, ¡¿1,0) and amplitude

inSjtfiKXTi).
PROOF. We write

A = \_  ^e^expj^Jx,*/,— ,flj/«Uíi,Vf— ,ö)Vi(i)i
.dt

r—1 /-s/vr   r
J—y/v 7l-y/¡¡ Jl

Now, an integration by parts gives

s/v

I = U™+Wx^a(x,y,l,0)Tl>i(yfr)
v

Since e«+^(^!/.i.e)/2 _ e*(*,v,i,i)-i(x-»)f f the first term verifies clearly the con-

clusion of Lemma 4. Also, in the second term, a repeated integration by parts gives

an asymptotic expansion of the amplitude. We have the same conclusion for the

integral S—^u- This finishes the proof of Lemma 4.

The proof of our result follows from the above lemmas and the use of a micro-

local partition of unity associated with the different cones and a neighborhood of

the origin. Notice that

E(x, y, 0) = (1- B(0)) jj&if'tftfa V, t, 0))j

= (1 - 77(0)) j_(e^>y^a(x, y, t, 0) - 6*—»>"*)-

is a symbol of a smoothing operator.



FOURIER INTEGRAL OPERATORS 571

We have the following:

COROLLARY. Let~i(x, t) be a variable curve of class C°° inR2 such that^(x, 0) =

0 and 7 X 7 t^ 0 then the operator

f1 dt
(x) = p.v. j_ f(x — Tf(x, t))—

is a bounded operator from L2omp(R2) to Li2oc(R2) (see [3]).

PROOF. We write

f(x-1(x,t)) = f    /   ei[(*-v)*-^.t)*]/(2/)
7r» 7r>

dyd0

and apply our result with a = 1 and <p(x, y, t, 0) = (x—y)0 — "y(x, t)0. In particular

there exists a V-d.o. P with symbol in S°,21,2 such that (# — P)*(H — P) is a

V>.d.o. with symbol in S^~q.
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