A radial uniqueness theorem for meromorphic functions
HTML articles powered by AMS MathViewer
- by P. J. Rippon
- Proc. Amer. Math. Soc. 85 (1982), 572-574
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660607-2
- PDF | Request permission
Abstract:
A classical theorem of Lusin and Privalov states that a meromorphic function in the unit disc, which has radial limit zero on a set which is both of second category and metrically dense in some boundary arc, must vanish identically. We prove below a radial uniqueness theorem which includes the Lusin-Privalov theorem as a special case and which also generalises the Barth-Schneider-Tse asymptotic analogue of the F. and M. Riesz radial uniqueness theorem. The part of the proof relating to Baire category is disposed of by using the Collingwood maximality theorem.References
- K. F. Barth and W. J. Schneider, A asymptotic analog of the F. and M. Riesz radial uniqueness theorem, Proc. Amer. Math. Soc. 22 (1969), 53–54. MR 247095, DOI 10.1090/S0002-9939-1969-0247095-9
- E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR 0231999
- Yngve Domar, On the existence of a largest subharmonic minorant of a given function, Ark. Mat. 3 (1957), 429–440. MR 87767, DOI 10.1007/BF02589497
- V. I. Gavrilov and M. M. Mirzojan, Boundary uniqueness theorems for meromorphic functions, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 4 (1979), 34–37, 101 (Russian, with English summary). MR 563029
- N. Lusin and J. Priwaloff, Sur l’unicité et la multiplicité des fonctions analytiques, Ann. Sci. École Norm. Sup. (3) 42 (1925), 143–191 (French). MR 1509265
- P. J. Rippon, The boundary cluster sets of subharmonic function, J. London Math. Soc. (2) 17 (1978), no. 3, 469–479. MR 500632, DOI 10.1112/jlms/s2-17.3.469
- K. F. Tse, An analog of the Lusin-Privaloff radial uniqueness theorem, Proc. Amer. Math. Soc. 25 (1970), 310–312. MR 262509, DOI 10.1090/S0002-9939-1970-0262509-4
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 572-574
- MSC: Primary 30D40
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660607-2
- MathSciNet review: 660607