Solution of the $\gamma$-space problem
HTML articles powered by AMS MathViewer
- by Ralph Fox
- Proc. Amer. Math. Soc. 85 (1982), 606-608
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660614-X
- PDF | Request permission
Abstract:
This paper disproves the classic conjecture that every $\gamma$-space is quasi-metrizable.References
- H. R. Bennett, Quasimetrizability and the $\gamma$-space property in certain generalized ordered spaces, Topology Proc. 4 (1979), no. 1, 1–12 (1980). MR 583684
- Peter Fletcher and William F. Lindgren, Quasi-uniform spaces, Lecture Notes in Pure and Applied Mathematics, vol. 77, Marcel Dekker, Inc., New York, 1982. MR 660063
- Ralph Fox, Pretransitivity and products of suborderable spaces, Topology and order structures, Part 1 (Lubbock, Tex., 1980) Math. Centre Tracts, vol. 142, Math. Centrum, Amsterdam, 1981, pp. 115–118. MR 630545 —, On metrizability and quasi-metrizability (to appear).
- Gary Gruenhage, A note on quasi-metrizability, Canadian J. Math. 29 (1977), no. 2, 360–366. MR 436089, DOI 10.4153/CJM-1977-039-2
- Heikki J. K. Junnila, Neighbornets, Pacific J. Math. 76 (1978), no. 1, 83–108. MR 482677, DOI 10.2140/pjm.1978.76.83 —, Covering properties and quasi-uniformities of topological spaces, Ph.D. thesis, Virginia Polytech. Inst. and State Univ., Blacksburg, 1978.
- Jacob Kofner, Transitivity and the $\gamma$-space conjecture in ordered spaces, Proc. Amer. Math. Soc. 81 (1981), no. 4, 629–635. MR 601744, DOI 10.1090/S0002-9939-1981-0601744-7 —, Transitivity and orthobases, Canad. J. Math. (to appear).
- W. F. Lindgren and P. Fletcher, Locally quasi-uniform spaces with countable bases, Duke Math. J. 41 (1974), 231–240. MR 341422, DOI 10.1215/S0012-7094-74-04125-8
- W. F. Lindgren and P. J. Nyikos, Spaces with bases satisfying certain order and intersection properties, Pacific J. Math. 66 (1976), no. 2, 455–476. MR 445452, DOI 10.2140/pjm.1976.66.455
- S. Ĭ. Nedev and M. M. Čoban, On the theory of $o$-metrizable spaces. III, Vestnik Moskov. Univ. Ser. I Mat. Meh. 27 (1972), no. 3, 10–15 (Russian, with English summary). MR 0307192
- V. W. Niemytzki, On the “third axiom of metric space”, Trans. Amer. Math. Soc. 29 (1927), no. 3, 507–513. MR 1501402, DOI 10.1090/S0002-9947-1927-1501402-2
- Hugo Ribeiro, Sur les espaces à métrique faible, Portugal. Math. 4 (1943), 21–40. MR 9432
- Hugo Ribeiro, Corrections à la note “Sur les espaces à métrique faible” (Port. Math., Vol. 4, (1943) Fasc. 1, p. 21–40), Portugal. Math. 4 (1943), 65–68 (French). MR 10266
- Ralph R. Sabella, Convergence properties of neighboring sequences, Proc. Amer. Math. Soc. 38 (1973), 405–409. MR 312479, DOI 10.1090/S0002-9939-1973-0312479-8 Topology Proc. 2 (1977), 687-688.
- W. A. Wilson, On Quasi-Metric Spaces, Amer. J. Math. 53 (1931), no. 3, 675–684. MR 1506845, DOI 10.2307/2371174
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 606-608
- MSC: Primary 54E15; Secondary 54E99, 54G20
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660614-X
- MathSciNet review: 660614