Baire sections for group homomorphisms
HTML articles powered by AMS MathViewer
- by S. Graf and G. Mägerl
- Proc. Amer. Math. Soc. 85 (1982), 615-618
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660616-3
- PDF | Request permission
Abstract:
The following result is proved: Let $X$ and $Y$ be compact topological groups and $p$ be a continuous group homomorphism from $Y$ onto $X$. Then there exists a map $q$ from $X$ to $Y$ such that $p \circ q = {\text {i}}{{\text {d}}_X}$ and ${q^{ - 1}}(B)$ is a Baire set in $Y$ for every Baire subset $B$ of $X$.References
- M. Bockstein, Un théorème de séparabilité pour les produits topologiques, Fund. Math. 35 (1948), 242–246 (French). MR 27503, DOI 10.4064/fm-35-1-242-246
- Siegfried Graf, A measurable selection theorem for compact-valued maps, Manuscripta Math. 27 (1979), no. 4, 341–352. MR 534799, DOI 10.1007/BF01507290
- P. J. Higgins, Introduction to topological groups, London Mathematical Society Lecture Note Series, No. 15, Cambridge University Press, London-New York, 1974. MR 0360908
- Joseph Kupka, Strong liftings with application to measurable cross sections in locally compact groups, Israel J. Math. 44 (1983), no. 3, 243–261. MR 693662, DOI 10.1007/BF02760974
- K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 397–403 (English, with Russian summary). MR 188994
- A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. (Rozprawy Mat.) 58 (1968), 92. MR 227751
- Marc A. Rieffel, On extensions of locally compact groups, Amer. J. Math. 88 (1966), 871–880. MR 202912, DOI 10.2307/2373085
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 615-618
- MSC: Primary 54C65; Secondary 22C05, 28B20, 54C50
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660616-3
- MathSciNet review: 660616