## Homotopy idempotents on finite-dimensional complexes split

HTML articles powered by AMS MathViewer

- by Harold M. Hastings and Alex Heller PDF
- Proc. Amer. Math. Soc.
**85**(1982), 619-622 Request permission

## Abstract:

We prove that (unpointed) homotopy idempotents on finite-dimensional complexes split, and describe some geometric consequences.## References

- A. K. Bousfield and D. M. Kan,
*Homotopy limits, completions and localizations*, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR**0365573** - Edgar H. Brown Jr.,
*Cohomology theories*, Ann. of Math. (2)**75**(1962), 467–484. MR**138104**, DOI 10.2307/1970209 - T. A. Chapman,
*On some applications of infinite-dimensional manifolds to the theory of shape*, Fund. Math.**76**(1972), no. 3, 181–193. MR**320997**, DOI 10.4064/fm-76-3-181-193 - T. A. Chapman and L. C. Siebenmann,
*Finding a boundary for a Hilbert cube manifold*, Acta Math.**137**(1976), no. 3-4, 171–208. MR**425973**, DOI 10.1007/BF02392417 - Jerzy Dydak,
*A simple proof that pointed FANR-spaces are regular fundamental retracts of ANR’s*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**25**(1977), no. 1, 55–62 (English, with Russian summary). MR**442918** - Jerzy Dydak and Harold M. Hastings,
*Homotopy idempotents on two-dimensional complexes split*, Proceedings of the International Conference on Geometric Topology (Warsaw, 1978) PWN, Warsaw, 1980, pp. 127–133. MR**656726** - Jerzy Dydak and Jack Segal,
*Shape theory*, Lecture Notes in Mathematics, vol. 688, Springer, Berlin, 1978. An introduction. MR**520227** - David A. Edwards and Ross Geoghegan,
*Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction*, Ann. of Math. (2)**101**(1975), 521–535. MR**375330**, DOI 10.2307/1970939 - David A. Edwards and Harold M. Hastings,
*Čech and Steenrod homotopy theories with applications to geometric topology*, Lecture Notes in Mathematics, Vol. 542, Springer-Verlag, Berlin-New York, 1976. MR**0428322** - Peter Freyd,
*Splitting homotopy idempotents*, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 173–176. MR**0206069**
P. Freyd and A. Heller, - Harold M. Hastings and Alex Heller,
*Splitting homotopy idempotents*, Shape theory and geometric topology (Dubrovnik, 1981) Lecture Notes in Math., vol. 870, Springer, Berlin-New York, 1981, pp. 23–36. MR**643520** - Alex Heller,
*On the representability of homotopy functors*, J. London Math. Soc. (2)**23**(1981), no. 3, 551–562. MR**616562**, DOI 10.1112/jlms/s2-23.3.551
P. J. Hilton and S. Wiley, - J. Milnor,
*On axiomatic homology theory*, Pacific J. Math.**12**(1962), 337–341. MR**159327** - James E. West,
*Mapping Hilbert cube manifolds to ANR’s: a solution of a conjecture of Borsuk*, Ann. of Math. (2)**106**(1977), no. 1, 1–18. MR**451247**, DOI 10.2307/1971155

*Splitting homotopy idempotents*(to appear).

*Homology theory: an introduction to algebraic topology*, Cambridge, 1962.

## Additional Information

- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**85**(1982), 619-622 - MSC: Primary 55P99; Secondary 20E06, 20F05, 55P55
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660617-5
- MathSciNet review: 660617