Graded algebras having a unique rational homotopy type
HTML articles powered by AMS MathViewer
- by Hiroo Shiga and Nobuaki Yagita
- Proc. Amer. Math. Soc. 85 (1982), 623-632
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660618-7
- PDF | Request permission
Abstract:
We consider the problem for which graded algebra ${A^* }$ complexes such that ${H^*}(K,Q) \simeq {A^*}$ is unique up to homotopy type. A necessary and sufficient condition is given using formal minimal model of ${A^*}$.References
- Richard Body, Regular rational homotopy types, Comment. Math. Helv. 50 (1975), 89–92. MR 380782, DOI 10.1007/BF02565736
- Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245–274. MR 382702, DOI 10.1007/BF01389853
- Mamoru Mimura and Hirosi Toda, On $p$-equivalences and $p$-universal spaces, Comment. Math. Helv. 46 (1971), 87–97. MR 285007, DOI 10.1007/BF02566829
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 258031, DOI 10.2307/1970725
- Hiroo Shiga, Rational homotopy type and self-maps, J. Math. Soc. Japan 31 (1979), no. 3, 427–434. MR 535089, DOI 10.2969/jmsj/03130427
- D. Sullivan, Differential forms and the topology of manifolds, Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) Univ. Tokyo Press, Tokyo, 1975, pp. 37–49. MR 0370611
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078
- Stephen Halperin and James Stasheff, Obstructions to homotopy equivalences, Adv. in Math. 32 (1979), no. 3, 233–279. MR 539532, DOI 10.1016/0001-8708(79)90043-4
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 623-632
- MSC: Primary 55P62
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660618-7
- MathSciNet review: 660618