THE ONLY GENUS ZERO \(n \)-MANIFOLD IS \(S^n \)

MASSIMO FERRI AND CARLO GAGLIARDI

Abstract. All \(n \)-manifolds of regular genus zero, i.e. admitting a crystallization which regularly imbeds into \(S^2 \), are proved to be homeomorphic to \(S^n \). A conjecture implying the Poincaré Conjecture in dimension four is also formulated.

Sunto. Si dimostra che tutte le \(n \)-varietà di genere regolare zero, cioè aventi una cristallizzazione che si immerge regolarmente in \(S^2 \), sono omeomorfe a \(S^n \). Si formula anche una congettura che implica quella di Poincaré in dimensione quattro.

1. Throughout this paper, we work in the PL category, for which we refer to [RS]; for graph theory, we refer to [Har]. \(\cong \) denotes PL-homeomorphism.

An \(h \)-coloured graph \((\Gamma, \gamma)\) is a multigraph \(\Gamma \), regular of degree \(h \), together with a coloration \(\gamma \) of the edges by \(h \) colours. If \(\mathcal{C} \) is the colour set, and \(\mathcal{B} \subset \mathcal{C} \), \(\Gamma_{\mathcal{B}} \) will denote the subgraph of \(\Gamma \) generated by the edges \(e \) such that \(\gamma(e) \in \mathcal{B} \). Given a colour \(c \in \mathcal{C} \), \(\hat{c} \) will denote the set \(\mathcal{C} - \{c\} \). An \(h \)-coloured graph \((\Gamma, \gamma)\) is said to be contracted if \(\Gamma_{c} \) is connected for each \(c \in \mathcal{C} \).

To every \((n + 1)\)-coloured graph \((\Gamma, \gamma)\), there corresponds an \(n \)-dimensional pseudocomplex \(K(\Gamma) \), whose \(i \)-simplexes are in one-one correspondence with the connected components of the subgraphs \(\Gamma_{\mathcal{B}} \) for all colour subsets \(\mathcal{B} \) of cardinality \(\#\mathcal{B} = n - i \). Note that, if \((\Gamma, \gamma)\) is contracted, then \(K(\Gamma) \) has exactly \(n + 1 \) vertices. For every closed, connected \(n \)-manifold \(M \), there exists at least one contracted \((n + 1)\)-coloured graph \((\Gamma, \gamma)\) such that \(|K(\Gamma)| \simeq M \); such a graph is called a crystallization of \(M \), and \(K(\Gamma) \) a contracted triangulation of \(M \). For the existence and equivalence theorems for crystallizations, see [P, F, FG]; these and other results are also summarized in [FGG].

We recall the notion of regular genus of a manifold, defined in [G3], which generalizes the genus of a surface and Heegaard genus of a 3-manifold. A 2-cell imbedding [Wh, p. 40] \(i: |\Gamma| \to F \) of an \((n + 1)\)-coloured graph \((\Gamma, \gamma)\) into a closed surface \(F \) is said to be regular if there exists a cyclic permutation \(\varepsilon = (\varepsilon_0, \ldots, \varepsilon_n) \) of the colour set, such that each region of \(i \) is bounded by the image of a cycle, whose edges are alternatively coloured by \(\varepsilon_i, \varepsilon_{i+1} \) (\(i \) being an integer mod \(n + 1 \)). The regular genus \(\rho(\Gamma) \) of \((\Gamma, \gamma)\) is defined to be the least genus of a surface into which
(\Gamma, \gamma) regularly imbeds. Given a closed n-manifold \(M\), its regular genus (or simply genus) \(\mathcal{G}(M)\) is defined as the integer

\[\mathcal{G}(M) = \min \{ \rho(\Gamma) | (\Gamma, \gamma) \text{ is a crystallization of } M \}. \]

As usual, we shall identify a graph with its imbedded image.

[G3, Corollary 7] asserts, among other things, that a 4-manifold of genus zero is simply-connected. We shall extend this result to dimension \(n\). This permits us to compute \(\mathcal{G}(S^1 \times S^n)\), and further to prove the following fact, which confirms the geometrical significance of this invariant.

Theorem 1. Let \(M\) be a closed, connected n-manifold; then

\[\mathcal{G}(M) = 0 \Rightarrow M \approx S^n. \]

Remark 1. In view of Theorem 1, it would be interesting to study the behaviour of \(\mathcal{G}\) with respect to connected sums. \(\mathcal{G}\) is easily proved to be subadditive by direct construction. It is trivially additive in dimension 2; in dimension 3, the Heegaard genus—hence also the regular genus—is known to be additive too [Hak, §7]. If the same property held in dimension 4, as we conjecture, this would imply an affirmative answer to the 4-dimensional Poincaré Conjecture. In fact, as it is well known [M, §1.1; Wa; C], if \(M\) is a 4-dimensional homotopy sphere then, for a suitable nonnegative integer \(k\), \(M \# k(S^2 \times S^2) \approx S^4 \# k(S^2 \times S^2)\). But this would imply that \(\mathcal{G}(M) = 0\), whence \(M \approx S^4\).

We wish to thank M. Pezzana for the helpful discussions and ideas.

2. From now on, \(\Delta_n = \{i \in \mathbb{Z} | 0 \leq i \leq n\}\) will be assumed as a colour set. For each \(\mathfrak{B} \subseteq \Delta_n\), \(\mathfrak{B}_{\mathfrak{B}}\) will denote the number of connected components of \(\Gamma_{\mathfrak{B}}\).

Lemma 1. Let \((\Gamma, \gamma)\) be a contracted \((n+1)\)-coloured graph, such that \(\rho(\Gamma) = 0\), and \(\varepsilon = (\varepsilon_0, \ldots, \varepsilon_n)\), a cyclic permutation of \(\Delta_n\) associated to a regular imbedding \(\iota\) of \((\Gamma, \gamma)\) into \(S^2\). Let \(\mathfrak{B} \subseteq \Delta_n\) contain at least three colours \(\varepsilon_{i-1}, \varepsilon_i, \varepsilon_{i+1}\) consecutive in \(\varepsilon\) (\(i\) taken in \(\mathbb{Z}_{n+1}\)). Then \(\mathfrak{B}_{\mathfrak{B}} = \mathfrak{B}_{\mathfrak{B}(\varepsilon_i)}\).

Proof. As \((\Gamma, \gamma)\) is contracted, \(\Gamma_{\mathfrak{B}}\) is connected. Call \(\gamma'\) and \(\iota'\) the restrictions of \(\gamma\) and \(\iota\) respectively to the latter graph; then \((\Gamma_{\mathfrak{B}}, \gamma')\) is an \(n\)-coloured graph, regularly imbedded by \(\iota'\) into \(S^2\). Namely, \(\iota'\) is a 2-cell imbedding [Wh, Theorem 6.11], and colours \(\varepsilon_{i-1}, \varepsilon_{i+1}\) are now contiguous in the corresponding permutation of \(\Delta_n - \{\varepsilon_i\}\); hence, \((\varepsilon_{i-1}, \varepsilon_{i+1})\)-coloured cycles bound regions of \(\iota'\).

Therefore, each edge coloured by \(\varepsilon_i\) joins two vertices of the same component of \(\Gamma_{\{i-1, i+1\}}\), thus also of the same component of \(\Gamma_{\mathfrak{B}(\varepsilon_i)}\). \(\square\)

Lemma 2. Let \((\Gamma, \gamma)\) and \(\varepsilon\) be as in Lemma 1. Let further \(\mathfrak{B} = \Delta_n - \mathfrak{B}'\), where \(\mathfrak{B}'\) contains no two colours consecutive in \(\varepsilon\). Then \(\mathfrak{B}_{\mathfrak{B}} = 1\).

Proof. Follows from Lemma 1, by induction on \(\# \mathfrak{B}'\). \(\square\)

Proposition 1. For a closed, connected n-manifold \(M\), \(\mathcal{G}(M) = 0 \Rightarrow M\) is simply-connected.
Proof. Obvious for \(n = 2 \). For \(n > 2 \), if \((\Gamma, \gamma)\) of Lemma 2 is a crystallization of \(M \), and \(\mathcal{S} = \Delta_n - \{i, j\} \) with \(i \) and \(j \) not consecutive in \(\varepsilon \), then there is only one component of \(\Gamma_{\mathcal{S}} \). Then [G2, §6, Proposition 9] proves the statement. □

As conjectured in [FG2, §6], we have

Corollary 1. \(\mathcal{G}(S^1 \times S^n) = 1 \).

Proof. \(\mathcal{G}(S^1 \times S^n) > 0 \) by Proposition 1.

In order to see that \(\mathcal{G}(S^1 \times S^n) \leq 1 \), consider the following construction of a crystallization of \(S^1 \times S^n \), which generalizes [G2, Figures 1,8] [FG2, Figures 4,7] and is obtained by applying the method illustrated in [FG2, §2].

Take \(2n + 4 \) vertices \(v_j^i (i \in \Delta_1, j \in \Delta_{n+1}) \). Join \(v_j^i \) with \(v_{j+1}^i \) by an edge coloured by \(j \). Put a further edge coloured by \(n + 1 \) between \(v_0^i \) and \(v_{n+1}^i \) if \(n \) is even, between \(v_0^i \) and \(v_{n+1}^i \) if \(n \) is odd. Finally, join \(v_0^i \) with \(v_j^i \) by \(n \) edges coloured by the \(n \) colours not yet used around those vertices.

The fact that such a graph can be regularly imbedded into the torus—with respect to every cyclic permutation of \(\Delta_{n+1} \)—follows from the equality \(\mathcal{G}(i, j) = n \) for all \(i, j \in \Delta_{n+1}, i \neq j \) (see [FGG, §5]). □

3. Proof of Theorem 1. It is trivial to see that \(M = S^n \Rightarrow \mathcal{G}(M) = 0 \), as \(S^n \) admits a standard crystallization consisting of two vertices joined by \(n + 1 \) differently coloured edges; this graph obviously imbeds regularly into \(S^2 \) with respect to every cyclic permutation of \(\Delta_n \).

The proof of the converse implication consists of some general considerations followed by three parts, relative to the cases (A) \(n \) odd, (B) \(n \) even and \(n = 4 \), (C) \(n = 4 \).

In the following construction, which was first introduced in [G1], \(M \) is an arbitrary closed \(n \)-manifold (not necessarily of genus zero), \((\Gamma, \gamma)\) a given crystallization of it, and \(K \) the relative contracted triangulation.

In the vertex set \(V = \{v_0, \ldots, v_n\} \) of \(K \), assume that \(v_i \) corresponds to \(\Gamma_i \). For each nonvoid subset \(W \) of \(V \), set \(W' = V - W \), and call \(K_W \) the contracted subcomplex of \(K \) generated by \(W \). If \(W = h + 1 \), then \(\dim K_W = h \). Furthermore, if \(\mathcal{S} \) is the subset of \(\Delta_n \) such that \(W = \{v_i \mid i \in \mathcal{S}\} \) and \(\mathcal{S}' = \Delta_n - \mathcal{S} \), then the number of \(h \)-simplexes of \(K_W \) equals \(\mathcal{G}(i, j) \); this is easy to check. Now let \(L \) be the largest subcomplex of \(S^d K \), disjoint from \(S^d K_W \cup S^d K_{W'} \). Then \(L \), whose space is a closed \((n - 1) \)-manifold, splits \(K \) into two complementary subcomplexes, \(N_W \) and \(N_{W'} \) say, having \(L \) as common boundary. Moreover, \(\mid N_W \mid \) and \(\mid N_{W'} \mid \) are regular neighbourhoods, in \(|K| \), of \(|K_W| \) and \(|K_{W'}| \) respectively. Observe that, in dimension three, if \(\mathcal{G}(W) = 2 \), then \(|N_W|, |N_{W'}|\) is a Heegaard splitting of \(M \).

From now on, the hypothesis \(\rho(\Gamma) = 0 \) will be assumed, and \(\iota: |\Gamma| \rightarrow S^2 \) will denote a regular imbedding of \((\Gamma, \gamma)\); w.l.o.g., \(\iota \) can be assumed to be associated to the fundamental cyclic permutation \(\epsilon = (0, 1, \ldots, n) \).

\(^2 \text{Sd means "barycentric subdivision of";} \) it carries every pseudocomplex to a simplicial complex.
(A) $n = 2r + 1$, $r \geq 0$.

Set $\mathcal{B} = \{2k + 1 \mid 0 \leq k \leq r\}$, $\mathcal{B}' = \Delta_n - \mathcal{B}$; call W, W' the corresponding sub-
sets of V. By Lemma 2, $g_{\mathcal{B}} = g_{\mathcal{B}'} = 1$, whence K_w and $K_{w'}$ consist of exactly one
r-simplex each. Therefore $|N_w|$ and $|N_{w'}|$ are closed $(2r + 1)$-balls; they cover M, and meet in their common boundary $|L|$. Thus $M \cong S^{2r+1}$.

(B) $n = 2r$, $r \neq 2$.

$\mathcal{B}, \mathcal{B}', W, W'$ as in case (A). Here, Lemma 2 only assures that $g_{\mathcal{B}'} = 1$, hence that
$|N_{w'}|$ is a $2r$-ball. The $2r$-complex $N_{w'}$, whose boundary L has a $(2r - 1)$-sphere as
space, has the homotopy type of the $(r - 1)$-complex $K_{w'}$. These facts, applied to
the Mayer-Vietoris homology sequence of $K = K_w \cup K_{w'}$ and $L = K_w \cap K_{w'}$, together with Poincaré duality, imply that $M \cong |K|$ is a homology sphere. Therefore,
as a consequence of Proposition 1 and of the Hurewicz isomorphism theorem, M is
even a homotopy sphere. This, which holds for all r, implies that $M \cong S^{2r}$ when
$r \neq 2$, by the generalized Poincaré Conjecture (Smale, Stallings and Zeeman).

(C) $n = 4$.

$\mathcal{B} = \{1, 3\}$, $\mathcal{B}' = \{0, 2, 4\}$; W, W' as before. Again, $g_{\mathcal{B}'} = 1$ implies that $|N_{w'}|$ is a
4-ball.

In order to show that $|N_{w'}|$ is a 4-ball too, let us examine $K_{w'}$ in some detail.
Since $g_{(1,3,4)} = g_{(0,1,3)} = 1$ by Lemma 2, $K_{(v_0, v_2)}$ and $K_{(v_0, v_4)}$ are formed by one
1-simplex each. Hence all triangles forming $K_{w'}$ have two edges in common; then
$K_{w'}$ will be a cone over the 1-pseudocomplex $K_{(v_0, v_4)}$ if it consists of as many
triangles as there are edges in $K_{(v_0, v_4)}$. But this is actually the case, as $g_{(1,2,3)} = g_{(1,3)}$
by Lemma 1. Therefore $|K_{w'}|$ is collapsible, $|N_{w'}|$ is a 4-ball (by Whitehead’s
theorem [RS, Corollary 3.27]), and $M \cong S^4$. □

For $n \geq 2$ we have

Corollary 2. Let (Γ, γ) be a contracted $(n + 1)$-coloured graph such that
$\rho(\Gamma_i) = 0$ for each $i \in \Delta_n$. Then $|K(\Gamma)|$ is a manifold.

Proof. For each $i \in \Delta_n$, Γ_i is connected and of regular genus zero. If $n = 2$, Γ_i
is a cycle and hence represents S^1. If $n \geq 3$, the fact that $|K(\Gamma_i)| \cong S^{n-1}$ is assured
by Corollary 3. If $n \geq 3$. This proves that, for each vertex v of $K(\Gamma)$, $|K(v, Sd K(\Gamma))| \cong S^{n-1}$, and this suffices to prove the statement (compare [F, Proposition 16]). □

Corollary 3. Let (Γ, γ) be a connected $(n + 1)$-coloured graph such that $\rho(\Gamma) = 0$. Then $|K(\Gamma)| \cong S^n$.

Proof. By eliminating a suitable number of dipoles of type 1 [FG, §3] one obtains a contracted graph (Γ', γ'). Now let $e: |\Gamma| \to S^2$ be a regular imbedding of
(Γ, γ) into S^2 relative to the cyclic permutation e. Then by [FG, Lemma 1] there
exists also an imbedding $e': |\Gamma'| \to S^2$ relative to the same e.

If $|K(\Gamma')|$ is a manifold, i.e. if (Γ', γ') is a crystallization, then $|K(\Gamma')| \cong |K(\Gamma)|$.
But $|K(\Gamma')|$ is actually a manifold by Corollary 2, since e' induces a regular
imbedding of each $(\Gamma', \gamma|_{\Gamma'})$ into S^2. Therefore $|K(\Gamma')| \cong |K(\Gamma')| \cong S^n$ by Theorem
1 applied to (Γ', γ'). □
REFERENCES

ISTITUTO DI MATEMATICA, FACOLTÀ DI INGEGNERIA, V. CLAUDIO, 21, I 80125 NAPOLI, ITALIA