The only genus zero $n$-manifold is $S^{n}$
HTML articles powered by AMS MathViewer
- by Massimo Ferri and Carlo Gagliardi PDF
- Proc. Amer. Math. Soc. 85 (1982), 638-642 Request permission
Abstract:
All $n$-manifolds of regular genus zero, i.e. admitting a crystallization which regularly imbeds into ${{\mathbf {S}}^2}$, are proved to be homeomorphic to ${{\mathbf {S}}^n}$. A conjecture implying the Poincaré Conjecture in dimension four is also formulated. Si dimostra che tutte le $n$-varietà di genere regolare zero, cioè aventi una cristallizzazione che si immerge regularmente in ${{\mathbf {S}}^2}$, sono omeomorfe a ${{\mathbf {S}}^n}$. Si formula anche una congettura che implica quella di Poincaré in dimensione quattro.References
- Stewart S. Cairns, The manifold smoothing problem, Bull. Amer. Math. Soc. 67 (1961), 237–238. MR 124064, DOI 10.1090/S0002-9904-1961-10588-0
- Massimo Ferri, Una rappresentazione delle $n$-varietà topologiche triangolabili mediante grafi $(n+1)$-colorati, Boll. Un. Mat. Ital. B (5) 13 (1976), no. 1, 250–260. MR 0428336
- M. Ferri and C. Gagliardi, Crystallisation moves, Pacific J. Math. 100 (1982), no. 1, 85–103. MR 661442, DOI 10.2140/pjm.1982.100.85 —, On the genus of $4$-dimensional products of manifolds (to appear). M. Ferri, C. Gagliardi and L. Grasselli, A graph-theoretical representation of $PL$-manifolds—A survey on crystallizations (to appear).
- Carlo Gagliardi, Spezzamenti alla Heegaard per varietà $n$-dimensionali, Boll. Un. Mat. Ital. A (5) 13 (1976), no. 2, 302–311. MR 436158
- Carlo Gagliardi, How to deduce the fundamental group of a closed $n$-manifold from a contracted triangulation, J. Combin. Inform. System Sci. 4 (1979), no. 3, 237–252 (English, with Italian summary). MR 586313
- Carlo Gagliardi, Extending the concept of genus to dimension $n$, Proc. Amer. Math. Soc. 81 (1981), no. 3, 473–481. MR 597666, DOI 10.1090/S0002-9939-1981-0597666-0
- Wolfgang Haken, Some results on surfaces in $3$-manifolds, Studies in Modern Topology, Math. Assoc. America, Buffalo, N.Y.; distributed by Prentice-Hall, Englewood Cliffs, N.J., 1968, pp. 39–98. MR 0224071
- Frank Harary, Graph theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London 1969. MR 0256911, DOI 10.21236/AD0705364
- Richard Mandelbaum, Four-dimensional topology: an introduction, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 1, 1–159. MR 551752, DOI 10.1090/S0273-0979-1980-14687-X
- Mario Pezzana, Sulla struttura topologica delle varietà compatte, Ati Sem. Mat. Fis. Univ. Modena 23 (1974), no. 1, 269–277 (1975). MR 0402792
- C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69, Springer-Verlag, New York-Heidelberg, 1972. MR 0350744, DOI 10.1007/978-3-642-81735-9
- C. T. C. Wall, On simply-connected $4$-manifolds, J. London Math. Soc. 39 (1964), 141–149. MR 163324, DOI 10.1112/jlms/s1-39.1.141 A. T. White, Graphs, groups and surfaces, North-Holland, Amsterdam, 1973.
Additional Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 638-642
- MSC: Primary 57N15; Secondary 05C10, 05C15, 57Q15, 57Q99
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660620-5
- MathSciNet review: 660620