Local isometries of compact metric spaces
HTML articles powered by AMS MathViewer
- by Aleksander Całka
- Proc. Amer. Math. Soc. 85 (1982), 643-647
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660621-7
- PDF | Request permission
Abstract:
By local isometries we mean mappings which locally preserve distances. A few of the main results are: 1. For each local isometry $f$ of a compact metric space $(M,\rho )$ into itself there exists a unique decomposition of $M$ into disjoint open sets, $M = M_0^f \cup \cdots \cup M_n^f$, $(0 \leqslant n < \infty )$ such that (i) $f(M_0^f) = M_0^f$, and (ii) $f(M_i^f) = M_{i - 1}^f$ and $M_i^f \ne \emptyset$ for each $i, 1 \leqslant i \leqslant n$. 2. Each local isometry of a metric continuum into itself is a homeomorphism onto itself. 3. Each nonexpansive local isometry of a metric continuum into itself is an isometry onto itself. 4. Each local isometry of a convex metric continuum into itself is an isometry onto itself.References
- Leonard M. Blumenthal, Theory and applications of distance geometry, Oxford, at the Clarendon Press, 1953. MR 0054981
- Herbert Busemann, The geometry of geodesics, Academic Press, Inc., New York, N.Y., 1955. MR 0075623
- Herbert Busemann, Geometries in which the planes minimize area, Ann. Mat. Pura Appl. (4) 55 (1961), 171–189. MR 143155, DOI 10.1007/BF02412083
- Michael Edelstein, An extension of Banach’s contraction principle, Proc. Amer. Math. Soc. 12 (1961), 7–10. MR 120625, DOI 10.1090/S0002-9939-1961-0120625-6 H. Freudenthal and W. Hurewicz, Dehnungen, Verkürzungen, Isometrien, Fund. Math. 26 (1936), 120-122.
- W. A. Kirk, On conditions under which local isometries are motions, Colloq. Math. 22 (1971), 229–232. MR 283739, DOI 10.4064/cm-22-2-229-232 A. Lindenbaum, Contributions à l’étude de l’espace métrique. I, Fund. Math. 8 (1926), 209-222.
- Karl Menger, Untersuchungen über allgemeine Metrik, Math. Ann. 100 (1928), no. 1, 75–163 (German). MR 1512479, DOI 10.1007/BF01448840
- W. Nitka, Bemerkungen über nichtisometrische Abbildungen, Colloq. Math. 5 (1957), 28–31 (German). MR 96177, DOI 10.4064/cm-5-1-28-31
- J. Szenthe, Über metrische Räume, deren lokalisometrische Abbildungen Isometrien sind, Acta Math. Acad. Sci. Hungar. 13 (1962), 433–441 (German). MR 144295, DOI 10.1007/BF02020808
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 643-647
- MSC: Primary 54E40
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660621-7
- MathSciNet review: 660621