## Local isometries of compact metric spaces

HTML articles powered by AMS MathViewer

- by Aleksander Całka PDF
- Proc. Amer. Math. Soc.
**85**(1982), 643-647 Request permission

## Abstract:

By local isometries we mean mappings which locally preserve distances. A few of the main results are: 1. For each local isometry $f$ of a compact metric space $(M,\rho )$ into itself there exists a unique decomposition of $M$ into disjoint open sets, $M = M_0^f \cup \cdots \cup M_n^f$, $(0 \leqslant n < \infty )$ such that (i) $f(M_0^f) = M_0^f$, and (ii) $f(M_i^f) = M_{i - 1}^f$ and $M_i^f \ne \emptyset$ for each $i, 1 \leqslant i \leqslant n$. 2. Each local isometry of a metric continuum into itself is a homeomorphism onto itself. 3. Each nonexpansive local isometry of a metric continuum into itself is an isometry onto itself. 4. Each local isometry of a convex metric continuum into itself is an isometry onto itself.## References

- Leonard M. Blumenthal,
*Theory and applications of distance geometry*, Oxford, at the Clarendon Press, 1953. MR**0054981** - Herbert Busemann,
*The geometry of geodesics*, Academic Press, Inc., New York, N.Y., 1955. MR**0075623** - Herbert Busemann,
*Geometries in which the planes minimize area*, Ann. Mat. Pura Appl. (4)**55**(1961), 171–189. MR**143155**, DOI 10.1007/BF02412083 - Michael Edelstein,
*An extension of Banach’s contraction principle*, Proc. Amer. Math. Soc.**12**(1961), 7–10. MR**120625**, DOI 10.1090/S0002-9939-1961-0120625-6
H. Freudenthal and W. Hurewicz, - W. A. Kirk,
*On conditions under which local isometries are motions*, Colloq. Math.**22**(1971), 229–232. MR**283739**, DOI 10.4064/cm-22-2-229-232
A. Lindenbaum, - Karl Menger,
*Untersuchungen über allgemeine Metrik*, Math. Ann.**100**(1928), no. 1, 75–163 (German). MR**1512479**, DOI 10.1007/BF01448840 - W. Nitka,
*Bemerkungen über nichtisometrische Abbildungen*, Colloq. Math.**5**(1957), 28–31 (German). MR**96177**, DOI 10.4064/cm-5-1-28-31 - J. Szenthe,
*Über metrische Räume, deren lokalisometrische Abbildungen Isometrien sind*, Acta Math. Acad. Sci. Hungar.**13**(1962), 433–441 (German). MR**144295**, DOI 10.1007/BF02020808

*Dehnungen, Verkürzungen, Isometrien*, Fund. Math.

**26**(1936), 120-122.

*Contributions à l’étude de l’espace métrique*. I, Fund. Math.

**8**(1926), 209-222.

## Additional Information

- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**85**(1982), 643-647 - MSC: Primary 54E40
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660621-7
- MathSciNet review: 660621