Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The dimension of inverse limit and $N$-compact spaces


Author: M. G. Charalambous
Journal: Proc. Amer. Math. Soc. 85 (1982), 648-652
MSC: Primary 54F45; Secondary 54G20
DOI: https://doi.org/10.1090/S0002-9939-1982-0660622-9
MathSciNet review: 660622
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For each $k = 1,2, \ldots ,\infty$, $N$, we construct a normal $N$-compact space $X$ with $\dim X = k$, where dim denotes covering dimension, which is the limit space of a sequence of zero-dimensional Lindelöf spaces.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F45, 54G20

Retrieve articles in all journals with MSC: 54F45, 54G20


Additional Information

Keywords: Normal, Lindel&#246;f, paracompact, <IMG WIDTH="24" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" SRC="images/img3.gif" ALT="$N$">-compact space, covering and inductive dimension
Article copyright: © Copyright 1982 American Mathematical Society