THE SPACES WHICH CONTAIN AN S-SPACE

W. F. PFEFFER

ABSTRACT. Under the continuum hypothesis, we show that a T_1-space X contains an S-space if and only if there is an uncountable locally countable set $E \subset X$ containing no Borel subset of X.

All spaces in this note are T_1. A space X is called locally countable if each point has a countable neighborhood. A set $E \subset X$ is called locally countable if it is such as a subspace. An S-space is a hereditarily separable space which is not Lindelöf. We remark that contrary to the usual definition, in this note an S-space is not required to be regular. If X is a space, we denote by $B(X)$ the family of all Borel subsets of X, i.e., the σ-algebra in X generated by the topology of X. If A is a set, we denote by $|A|$ its cardinality.

The Zermelo-Fraenkel set theory including the axiom of choice, the continuum hypothesis, and Martin's axiom will be abbreviated as ZFC, CH, and MA, respectively.

1. DEFINITION. A space X is called ample if each uncountable locally countable set $E \subset X$ contains an uncountable subset $B \in B(X)$.

In this definition the word "ample" is used to indicate a certain richness of the Borel structure of X. The ample spaces are important in the topological measure theory; for each diffused, regular, Radon measure in an ample space is σ-finite (see [GP, 2.4]). Thus it appears useful to characterize the ample spaces in terms of much studied S-spaces.

The following lemma was first proved by R. J. Gardner (see [GP, 2.5]).

2. LEMMA. Let $E \subset X$ be a locally countable set containing no uncountable subset $B \in B(X)$. Then E is hereditarily separable.

PROOF. It suffices to show that E is separable. By Zorn's lemma there is a maximal disjoint family D of nonempty countable subsets of E which are open in E. By the maximality of D, $\bigcup D$ is dense in E. For each $D \in D$, choose an $x_D \in D$, and let $B = \{x_D : D \in D\}$. Then $B \in B(X)$; for B is discrete. By our assumption B is countable, and hence so are D and $\bigcup D$.

3. COROLLARY. If X is not ample, then it contains an S-space.

The following lemma is a special case of Theorem 2.6(i) from [J, p. 12].

4. LEMMA. Let X be not Lindelöf. Then there is a locally countable $Y \subset X$ such that Y is not Lindelöf and $|Y| = \omega_1$.

Received by the editors November 4, 1981 and, in revised form, January 19,1982.

1980 Mathematics Subject Classification. Primary 54D20; Secondary 28A05.

Key words and phrases. Separable, Lindelöf, locally countable, Borel set, continuum hypothesis, Martin's axiom.
PROOF. Let \(\mathcal{U} \) be an open cover of \(X \) which has no countable subcover. Then we can find a collection \(\{ U_\alpha : \alpha < \omega_1 \} \subset \mathcal{U} \) where each \(U_\beta - \bigcup_{\alpha < \beta} U_\alpha \neq \emptyset \). For every \(\beta < \omega_1 \), choose an \(x_\beta \in U_\beta - \bigcup_{\alpha < \beta} U_\alpha \). The set \(Y = \{ x_\beta : \beta < \omega_1 \} \) has the desired properties.

5. LEMMA. Let \(Y \) be a hereditarily separable space with \(|Y| = 2^\omega \). Then there is an uncountable set \(E \subset Y \) which contains no subset \(B \in B(Y) \) with \(|B| = 2^\omega \).

PROOF. Let \(\mathcal{H} \) be the family of all sets \(B \in B(Y) \) with \(|B| = 2^\omega \). Since \(Y \) is hereditarily separable, it contains at most \(|Y|^\omega = 2^\omega \) closed subsets. Since \(Y \) is a \(T_1 \)-space, \(|\mathcal{H}| = 2^\omega \). Now it is easy to construct a set \(E \) with \(|E| = 2^\omega \) which contains no element of \(\mathcal{H} \) (for the details see [K, §40, I, Theorem 2]).

6. THEOREM (CH). A space \(X \) is ample if and only if it contains no \(S \)-space.

PROOF. If \(X \) contains an \(S \)-space, then by Lemma 4, it also contains a locally countable \(S \)-space \(Y \subset X \) with \(|Y| = 2^\omega \). It follows from Lemma 5 that \(Y \), and consequently \(X \), is not ample. The converse is given by Corollary 3.

The following example shows that Theorem 6 cannot be proved without CH.

7. EXAMPLE. By an unpublished result of Szentmiklosi, there is a model \(M \) of ZFC+MA+¬CH in which a regular \(S \)-space exists. It follows from Lemma 4 that in \(M \) there is a regular \(S \)-space \(Y \) with \(|Y| = \omega_1 \). By [MS] (the lemma following Theorem 2 in §2), in \(M \) there exists a subspace \(X \) of real numbers such that each subset of \(X \) is Borel, and \(|X| = \omega_1 \). Choose a bijection \(f : Y \rightarrow X \), and let \(\tau \) be the weakest topology in \(Y \) which refines the given topology of \(Y \), and for which \(f \) is continuous. Then each subset of \((Y, \tau) \) is Borel, and hence \((Y, \tau) \) is ample. However, since \(X \) is second countable it is easy to see that \((Y, \tau) \) is still a regular \(S \)-space.

The author is obliged to the referee for valuable comments and suggestions.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, DAVIS, CALIFORNIA 95616

Current address: Department of Mathematics, University of Petroleum and Minerals, Dhahran, Saudi Arabia