Graphs with subconstituents containing $L_{3}(p)$
HTML articles powered by AMS MathViewer
- by Richard Weiss
- Proc. Amer. Math. Soc. 85 (1982), 666-672
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660626-6
- PDF | Request permission
Abstract:
Let $\Gamma$ be a finite connected undirected graph, $G$ a vertex-transitive subgroup of $\operatorname {aut} (\Gamma )$, $\{ x,y\}$ an edge of $\Gamma$ and ${G_i}(x,y)$ the subgroup of $G$ fixing every vertex at a distance of at most $i$ from $x$ or $y$. We show that if the stabilizer ${G_x}$ contains a normal subgroup inducing ${L_3}(p)$, $p$ a prime, on the set of vertices adjacent to $x$, then ${G_5}(x,y) = 1$.References
- N. Campbell, Pushing-up infinite groups, Ph.D. Thesis, California Inst. of Tech., 1979.
- A. Gardiner, Arc transitivity in graphs, Quart. J. Math. Oxford Ser. (2) 24 (1973), 399–407. MR 323617, DOI 10.1093/qmath/24.1.399
- A. Gardiner, Arc transitivity in graphs. II, Quart. J. Math. Oxford Ser. (2) 25 (1974), 163–167. MR 412015, DOI 10.1093/qmath/25.1.163
- Anthony Gardiner, Doubly primitive vertex stabilisers in graphs, Math. Z. 135 (1973/74), 257–266. MR 412014, DOI 10.1007/BF01215029
- David M. Goldschmidt, Automorphisms of trivalent graphs, Ann. of Math. (2) 111 (1980), no. 2, 377–406. MR 569075, DOI 10.2307/1971203
- W. T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947), 459–474. MR 21678, DOI 10.1017/s0305004100023720
- W. T. Tutte, On the symmetry of cubic graphs, Canadian J. Math. 11 (1959), 621–624. MR 109794, DOI 10.4153/CJM-1959-057-2
- Richard Weiss, Über symmetrische Graphen und die projektiven Gruppen, Arch. Math. (Basel) 28 (1977), no. 1, 110–112. MR 439677, DOI 10.1007/BF01223898
- Richard Weiss, Symmetric graphs with projective subconstituents, Proc. Amer. Math. Soc. 72 (1978), no. 1, 213–217. MR 524349, DOI 10.1090/S0002-9939-1978-0524349-5
- Richard Weiss, Groups with a $(B,\,N)$-pair and locally transitive graphs, Nagoya Math. J. 74 (1979), 1–21. MR 535958, DOI 10.1017/S0027763000018420
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 666-672
- MSC: Primary 05C25; Secondary 20B25
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660626-6
- MathSciNet review: 660626