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Lo-VALUED VECTOR MEASURES ARE BOUNDED

N. J. KALTON1, N. T. PECK AND JAMES W. ROBERTS2

ABSTRACT.   Every vector measure taking values in Lo(0,1) has bounded

range.

The question of whether every vector measure taking values in the space Ln(0,1)

is bounded was first raised by Turpin [17]. Turpin showed the existence of an

unbounded vector measure with range in a certain nonlocally convex F-space.

Shortly afterwards, Fischer and Scholer [3, 4] and Labuda [9] demonstrated that

a vector measure taking values in an Orlicz space L¿ with <j> unbounded will be

necessarily bounded. The purpose of this note is to show every Ln-valued measure

is bounded. This result has applications to stochastic integrals [1, 13, 14, 18].

We shall denote by 7 the unit interval (0,1) and S is the family of Borel subsets

of 7. X will denote Lebesgue measure on S. The space Ln = Ln(7; B, X) consists of

all real Borel functions on 7 with functions agreeing almost everywhere identified.

This space is equipped with convergence in measure, which is F-normed by

A base of neighborhoods for 0 is given by sets of the form V(e, M) for e > 0,

M > 0 where

V(e, M) = {fE Lq: X(|/| > M)< e}.

Let (S, E) be any measurable space. Then a (continuous) submeasure v: E —► R+

is a set-function satisfying

V(A) < v(AUB)< u(A) + v(B),       A,BET,,

v(An) i 0,    whenever A„ { 0.

It is an unsolved problem (Maharam [10]) whether every continuous submeasure

has an equivalent measure, i.e. a measure giving the same null sets. A continuous

submeasure p induces a pseudo-metric d on E given by d(A, B) = p,(AAB). We

say E is p-separable if (E, d) is separable; if v is a measure on a er-algebra E' then

a map h: E —»• E' is continuous if it is continuous with respect to the induced

psuedc-metrics.

If X is an F-space and <j>: E —* X is a vector measure, then a continuous

submeasure p is said to be a control submeasure for 0 if it is equivalent to the
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submeasure

11011(A) = 8up(||#£)|| : 77 G E, 77 C A)

for AGE. Maharam's problem is equivalent to the problem of whether every vector

measure with values in an F-space has a control measure (cf. [2, p. 14]).

Some further notation will be required. If A G E (or S ) then 1a denotes the

indicator function of A, i.e.

1,    sEA

0,    s£A.

If Q is a partition of a set A G E into sets from E, then E(£) denotes the family

of all unions of sets from Q.

Note. Shortly after the preparation of this paper, the authors learned that

the same results have been obtained independently and somewhat earlier by M.

Talagrand [19]. Talagrand's proof of Theorem 1 is slightly different in character

although it has some ideas in common.

THEOREM 1.  Every vector measure taking values in Lo is bounded.

PROOF. The proof will be accomplished via several reductions of the problem.

We shall start from the assumption that there exists an unbounded vector measure

dr. E —► Lo defined on some measurable space (S, E), and derive a contradiction.

The idea of the argument is to show that we can assume certain properties and

these eventually lead to a contradiction.

We denote a control submeasure for <j> by p: E —+ R+. Our first simplifying

assumption is

(Al) E is p,-separable and has no ß-atoms.

Clearly (Al) is justified by the fact that if d> is unbounded it is also unbounded on

some ¿¿-separable sub-<r-algebra; atoms can be discarded.

We shall also define a set function 0: E —► R by setting 0(A) to be the supremum

of all a > 0 such that if M > 0 there exists B G E, B C A with

\{t: \4>(B;t)\ >M}>a.

(Here 4>(B; t) = <t>(B)(t).) Note that 6(S) > 0.

LEMMA 1.   If A, B G E are disjoint then

0(AUB) < 6(A) + 0(B).

PROOF. If a < 0(A U B) and M > 0 there exists C E E with C C A U B and
MI<#C)| > 2M} > a. Hence

X{|0(AnC)| > M} + \{\<p(BnC)\ >M}>a.

By letting M —> oo, we see that 0(A) -\- 0(B) > a and the lemma follows.

LEMMA 2. Let £ C S consist of all Borel sets E such that the set {1E ■ <p(A): A E

E} is bounded in Lq. Then £ is a o-ideal ofB; in particular ifEn E £ (n E N) then

\jEnE£.

1a(s)



Lo-VALUED VECTOR MEASURES 577

PROOF.  If En E £ then there exist 0 < c„ < 2_n such that

||c„ • lEn ■ 0(A)|| < 2~n,        AGE, nGN.

Thus ¡C^=i °n • lß„ • 0(A) converges uniformly to h ■ 0(A) where h = £ cn • lßn.

It follows easily that {/i • 0(A): A G E} is also bounded. Finally if g(t) = h(t)~l

for h(t) > 0 and g(t) = 0 otherwise, then {gh ■ 0(A): A G E} is bounded. However

gh = lufin.

In view of Lemma 2 we can find a set F G £ of maximal measure and if E E E

then \(E\F) = 0. We call F, which is unique up to sets of measure zero, the

bounded support of 0, and let 7\F be the unbounded support of 0. For each AGE,

let A* be the unbounded support of the measure B —► 0(A (~) B). We observe some

simple properties of the map A —► A* (E —► fl).

LEMMA 3.  (a) X(A*) = 0 if and only if{<j>(B): B C A} is bounded.
(b) (A U B)* = A* U B* up to sets of X-measure zero for A, BE E.

(c) 0(A) < X(A*), AGE.
(d) Ifß(AAB) = 0 í/ien X(A* AB*) = 0, A, /7 G E.

The proofs of these statements are almost immediate.

The next lemma is, however, crucial in the development of the proof of the

theorem.

LEMMA 4. Given e > 0 there exists 6 > 0 such thatp,(A) < 6 implies X(A*) < e.

Hence, if A, BE E and p(AAB) < 6 then \(A*AB*) < e.

PROOF. Given e > 0 choose 6 > 0 such that /¿(A) < 6 implies 0(A) G

V(e/256,1). Fix any A G E with p(A) < 6 and let g = {Bi,...,Bn} be any
partition of A.

Let /j = (p(Bi) (1 < i < n) and let {gji 1 < j < 2n) be some ordering of

the functions Y17=i a«/* over *"* cn°ices of signs a¿ = ¿1. We consider the map

T: li —► Lfl defined by

nO = S fcífc    for £ = (ti) G ¿i.
t=i

The set K = {T(Ç): ||£|| < 1} is exactly the absolutely convex hull of the set

mm
If h E K then h = X)"=i Cjfj where —1 < Cj < 1. Now by a lemma

of Musial, Wojczynski and Ryll-Nardzewski [15] (essentially the same lemma is

originally found in Maurey-Pisier [12]), there is a probability measure P on the set

M = {—1, +l}n so that for any n,..., xn E R

pju;: I^^Mxil > ¿lE^^l} > s
where X¿: fl —► {—1, +1} is the tth coordinate map.

Let E = {t | £ afi(t)\ > 16}. Then for t E E

p{w:E|Ex^(i)|^2}^*

and so P(g)X{(u;,t): |E^»M > 2} > |X(F).
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However for each w G 0, £X¿/i G F(e/128,2) and hence £X(F) < e/128 or

X(F) < e/16. Thus h E V(e/16,16).
We now apply NikiSin's theorem [16] to the operator T. By examining the proof

given in [5] it can be seen that there is a Borel set E with X(F) > 1 — e and

Mflrfl > r) PI E) < 1024/er,        0 < r < oo.

(An alternative approach tó this step may be obtained from results in a forthcoming

paper [6].)

Let dg = 1B. Then for B E E(£)

I d9\<p(B;t)\1'2dt = I \<p(B;t)\1/2dt < 2048/e.
J Je

Consider dg E L^O, 1) as a net over all partitions of A ordered by refinement.

Then {dg} has a cluster point a, 0 < a < 1, a.e. f a(t)\<j>(B;t)\1/2 dt < 2048/e for

B E E with 77 C A. Now / a(t)dt > 1 — e and so, if b(t) = a(t)~x for a(t) > 0

and b(t) = 0 otherwise, b-a = lF where X(F) > 1 — e. The set {1F • 0(77): B E

E, B C A} is thus bounded in Lo and so 7\F D A*, i.e. X(A*) < e.

We now come to our second reduction of the problem. We can assume

(A2) p is a probability measure on E.

Justification of (A2). For each partition Q of 5, Q = {Bi,...,Bn} define

{d: 1 < i < n} in fl by C¿ = B*\ \Jj<:i B*. Define for A G E

Vx(Cí):77ínA7í0l.

Then vQ is additive on E(£), monotone and vg(S) = X(5*) > 0. Denote by v any

pointwise cluster point of the net {vg} of set functions on E. Then v(S) == \(S*),

v is additive and monotone and u(B) < \(B*), B E E. Hence by Lemma 4, u is

/¿-continuous. It follows that u is countably additive and there is a subset A G E so

that v(A) > 0, and if B C A with S G E then i/(B) = 0 if and only if p,(B) = 0,
i.e. v and /tí are equivalent on E fl A.

We now achieve our reduction by replacing 0 by its restriction to A and p. by

v(A)~ 1v. The new 0 is still unbounded since X(A*) > u(A) > 0, and of course

assumption (Al) remains in force.

Our third reduction is that we can assume

(A3) X(A* flß*) = 0 whenever A n 77 = 0.
The justification of (A3) is partially based on an argument of Kwapien [8].

Justification of (A3). Let {77nifc: 1 < k < 2"} be, for each n, a partitioning of

S into sets of //-measure 2~n so that

BnM = £„+1,2*-! U Bn+ki2k,        1 < k < 2n, n E N,

and {-Bn,fc: 1 < k < 2n, n E N} is /i-dense in E.

For given e > 0 there exists 6 so that /i(A) < 6 implies X(A*) < e. For each n

let m = m(n) = [£-2n].

Let tpn E Lo be denned by

2"

^n = 52 Xn.fc,    whereXn.fc = 1b- k-
fc=i
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Then {ipn} is monotone increasing in L0 and integer-valued.

For any m-subset J of {1,2,..., 2"},
»i

max Xni(t)dt < e
/o    i€J

and summing over all such sets,

/7o

/   21??fXn1<(i)<ft<(wi)e>
7o ^f teJ \mj

f (2n\ _ (2" - ^»(«A Ä < pnV
To \nv     \      m      y Vm/

/2n — ipn(t)\ _ f2n\   2n — m     2n — m — ipn(t) + 1

\      m       )~\m)       2n 2»-yn(t) + l

whenever 2n > <5_1. Thus

<>-r'M2:)H)
IS

> 1 —e.
*<4

Applying this to every e > 0 we conclude that sup tpn = ip < oo a.e.

Of course, since 0 is unbounded, we must have tp > 0. Hence there exists Fo G fl

with X(F0) > 0 and n G N so that

M*) = W) > 0,        t E F0.

Now there exists k, 1 < k < 2n with \(B*nk n F0) > 0. Let F = 77; k n F0.

Since for m > n, J2j=i Xm,j — V'm = ^n on F, we must have (for fixed m),

X)     Xm,,(i) = 1,       t €F,
ßm,jC5n,k

so that the sets {#*„, D F: Bmj C Bn>k} intersect only in sets of X-measure zero.

It follows quickly from the /4-X-continuity of the map A \-* A* that if Ai, Ai E E

with Ai fl A2 = 0 and Ai, Ai C Bn<k then

x(FnA*nA*j = o.

Now we achieve our reduction by replacing 0 by the measure 0', restricted to

Bn,k n F, 0'(A) = lF • 0(A), A G E, A C Bn,k n F. It is again clear that 0' is
unbounded and we can obtain (A2) by renormalizing p. It is not difficult to see

that our procedure replaces (for A C Bnik), A* by F fl A* (up to sets of measure

zero) and so (A3) now holds.

Under the assumptions (A1)-(A3) we now prove

LEMMA 5. Given any e > 0, disjoint sets Ai • ■ -An E E and M > 0, there exist

Bi C Ai, Bi E E so that for every subset J of {1,2, ...,n}

4\J BiU|J(A\£i))
\ieJ        %tJ J

> M

on a set of measure at least X^"=i #(A) — e.
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PROOF.  We may choose a constant K so large that

(i) U-AiMÇi) E V(t/4n2,K), d C A,
(ii) 0(A) G V(e/4n,K), 1 < i < n.
Choose Bi C A, Bi E E so that X{|0(.B¿)| > nK + M) > 0(A) — e/4n.

For J C {l,2,...,2n}, let C = \JiejBi U U<(£j(A\S<)- Then for each i let

Ei = {t: \<p(Bi;t)\ > nK + M, t E A*}. Then X(F¿) > 0(A) — e/4n — e/4n2 >
0(A) — e/2n. If t E Ei and i E J then

|0(C;r.)| > |0(77i;i)| - (n - 1)K > M

except on a set of measure at most (n — l)e/4n2 < e/4n. (Here we use the fact

that the sets A* are almost disjoint and (i)).

UtEEi and i £ J then

|0(C7; i)| > |0(Bi5 i)| - (n - 1)7<T - |0(A; *)| > M

except on a set of measure at most e/4n. Hence X{|0(C7)| > M} > 2™=1 6(A) — £

as the sets {Ei: 1 < î < n} are almost disjoint.

Lemma 6.  6 is a measure on E which is ¡¿-continuous.

Remark. Of course (A1)-(A3) are in force here.

PROOF. By Lemma 1, 6(A \JB)< 6(A) + 6(B) and by Lemma 5, 6(A \JB)>
6(A) + 6(B) for disjoint A, B. As 6(A) < X(A*) and by Lemma 4, A t-+ A* is
continuous, we must have that 6 is /¿-continuous and countably additive.

We now make a further reduction; we may assume

(A4) There is a constant p, 0 < p < 1, so that 6(A) = pß(A), AGE.

Justification of (A4). Since 6 is /¿-continuous and nonzero (0 is unbounded), there

is a subset 77 G E so that 6(B) > 0 and 0 and p. are equivalent on E fl B. Restrict

0 to S and redefine p.(A) as 0(B)~10(A) for A G E C\B. Let p = 6(B) and (A4) will
hold. Of course since 6(B) > 0, 0 is still unbounded.

Under assumptions (A1)-(A4) we now prove

LEMMA 7. Let Eo be a finite subalgebra o/E and suppose e, M > 0. Then there

is a set C G E independent of Eo with p(C) = ^ so that

X{|0(C)|>A7}>p-e.

PROOF. Let Ai,...,A be the atoms of Eo. Choose N sufficiently large so

that p,(B) < n/N implies <p(B) E V(e/2,1). Subdivide each A hito N disjoint sets
(Aj- 1 < J < N) of //-measure p(A)/N. Now use Lemma 5 to produce Bij C A¿

so that for any subset J of L = {(i, j): 1 < i < n, 1 < j < N},

| mJBijU LMABí;)] > M + A >.p-\-

By appropriate choice of J we may suppose that if D = \J j Bij U Ul\ jÍAj\Bíj),

then

y(A) < AD n A) < MA) + n-1
for each fixed i. Choose D¿ £ E, D¿ C D D A so that /¿(D¿) = \p(A)- Let
C = (JDi. Then fi(D\C) < n/N, and X{|0(C)| > M} > p — e as required.
Clearly C n A = A.
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We now are in position for the final step in the theorem. Assumptions (A1)-(A4)

remain in force. First we determine 6 > 0 so that /¿(A) < 6 implies that 0(A) G

V(p/50,1). Next select an integer r so that (1 — 6/2)r < 9/25. Select a further

integer N so that 2N > 5-1 and N > 2r+2/p and a constant K,K > 2N+2.

We select, by induction, a sequence {C7„: 1 < n < N} of sets in E and an

increasing sequence of constants {Mn: 1 < n < N} so that

(i) p(Cn) =h,l<n<N,
(ii) C„ is independent of the algebra generated by {Ci,..., Cn—i} for n > 2,

(in) X{|0(Cn)| > Mn) < P/167V,
(iv) X{|0(Cn+1)| >Mn + K}>\p,n> 1,
(v) \Md)| >k}> y.
Clearly Lemma 7 imphes we can make such a construction. Set Mq = 0 for

convenience and

En = {t |0(Cn;i)| > Mn_x +K},        n = l,2,...,N.

Then X)nLi M-^n) > h^P- Hence the set of t which belongs to at least \Np of

the sets En has measure at least \p. Now use (in) as well to produce a set F C I

with X(F) > 3p/16 such that if t G F, then t E En for at least {Np sets En and

\<p(Cn;t)\ < Mn for all n, 1 < n < TV.
Let Ai,...,A2n be the atoms of the finite algebra generated by {Ci,...,Cjv}

so that /t(A) = 2~N. Let /, = 0(A)- Let u¿(í) (í G 7) be the decreasing

rearrangement of the finite sequence {|/i(<)|, |/2(i)|> ■•-, |/2N(*)|}.

For fixed t E F, let ¿i,..., ir be chosen to be distinct and so that |/ik(i)| — uk(t),

1 < k < r. Since \Np > 2r there are two distinct indices m and n such that

A* C Cm if and only if Ak C Cn (for 1 < ä < r), and t E Em ("I En. Hence

2"

|0(Cn;i)-0(Cm;i)|<    52   ut(t)<2\(í).
t=r+l

However, if n > m, |0(C7n;i)| > Mm -(-7C and |0(Cm;i)| < Mm so that we

conclude

ur(t) > K/2N > 4,        t E F.

Now choose q E N so that J£ < ç • 2—N < ¿; this is possible since 2N > 6~l.

We introduce two sets of random variables {Xi,... ,X2n}, {Yi,... ,Y2n} defined

on some (finite) probability space fi. The joint distribution of {X¿: i < 2N} is such

that a o-subset of {1,2,..., 2^} is chosen at random and Xi = 1 or 0 according as i

belongs to this subset or i fails to belong to the subset. {Yi,..., Y2jv} are mutually

independent and independent of {Xi,.. .,X2n} with P(Yi = 1) = P(Y¿ = —1) =

r-
For any w G fi, £i=i Xi(u)Yi(w)<p(A) G V*(p/25,2). For fixed t E (0,1), suppose

as above ii.ir are distinct indices so that uk(t) = |/¿fc(í)|, 1 < fc < r. Let fifc

(1 < k < r) be the event that X»t = • • ■ = X^, = 0 but Xik — 1. Then by

symmetry P{w E fifc: lE^.^i/iWI > «*(*)} > hp(nk)- Hence

i>{|£*<««<)| > «.«)} > |p( Ú th} > |(i - (i - ^)')
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Now P (g) X{(w, t): \J^XiYifi\ > 2} < p/25 and hence \{t: ur(t) > 2} < p/8.
Thus X(F) < p/8. However we originally showed X(F) > 3p/16 so that we have

arrived at the desired contradiction and the proof of the theorem is complete.
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