An inequality for invariant factors
HTML articles powered by AMS MathViewer
- by Robert C. Thompson
- Proc. Amer. Math. Soc. 86 (1982), 9-11
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663854-9
- PDF | Request permission
Abstract:
A divisibility relation is proved connecting the invariant factors of integral matrices $A$, $B$, $C$ when $C = AB$.References
- Larry J. Gerstein, A multiplicative property of invariant factors, Linear and Multilinear Algebra 2 (1974), 141–142. MR 352128, DOI 10.1080/03081087408817051
- T. Klein, The multiplication of Schur-functions and extensions of $p$-modules, J. London Math. Soc. 43 (1968), 280–284. MR 228481, DOI 10.1112/jlms/s1-43.1.280
- Morris Newman, A result about determinantal divisors, Linear and Multilinear Algebra 11 (1982), no. 4, 363–366. MR 662012, DOI 10.1080/03081088208817461
- Morris Newman, Integral matrices, Pure and Applied Mathematics, Vol. 45, Academic Press, New York-London, 1972. MR 0340283
- M. F. Smiley, Inequalities related to Lidskiĭ’s, Proc. Amer. Math. Soc. 19 (1968), 1029–1034. MR 233833, DOI 10.1090/S0002-9939-1968-0233833-7
- R. C. Thompson, Interlacing inequalities for invariant factors, Linear Algebra Appl. 24 (1979), 1–31. MR 524823, DOI 10.1016/0024-3795(79)90144-7 —, Left multiples and right divisors of integral matrices (submitted). —, Eigenvalues, singular values, and number theory, Santa Barbara Conference on Matrix Theory, 1977.
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 9-11
- MSC: Primary 15A36; Secondary 15A39
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663854-9
- MathSciNet review: 663854