MIDDLE NUCLEUS = CENTER
IN SEMIPRIME JORDAN ALGEBRAS

KEVIN MCCRIMMON AND NG SEONG NAM

ABSTRACT. A. A. Albert showed that the middle nucleus and center coincide for a simple Jordan algebra finite-dimensional over a field of characteristic $\not= 2$. E. Kleinfeld extended this to arbitrary simple Jordan algebras of characteristic $\not= 2$. Recently this result has played a crucial role in the structure theory of E. Zelmanov. In this note we extend the result to linear Jordan algebras with no derivation-invariant trivial ideals.

The left, middle, and right nucleus $N_l(A)$, $N_m(A)$, $N_r(A)$ of any nonassociative algebra A consists of the elements $n \in A$ with $[n,A,A] = 0$, $[A,n,A] = 0$, $[A,A,n] = 0$ respectively, where the associator is given by $[x,y,z] = (xy)z - x(yz)$. The nucleus $N(A)$ consists of the elements in all three nuclei simultaneously, and the center $C(A)$ consists of the nuclear elements which commute with A, $[n,A] = 0$. A derivation of A is a linear transformation D satisfying

$$D(xy) = D(x)y + xD(y)$$

and hence necessarily

$$D([x,y,z]) = [D(x),y,z] + [x,D(y),z] + [x,y,D(z)]$$

as well. From this we see each nucleus is derivation-invariant, $D(N_l(A)) \subseteq N_l(A)$ for all D (the same is true of the center). When A is commutative we have

1. $[x,y,z] = -[z,y,x]$,
2. $[x,y,z] + [y,z,x] + [z,x,y] = 0,$

so $C(A) = N(A) = N_l(A) = N_r(A) \subseteq N_m(A)$. Our goal is to show conversely that for semiprime Jordan algebras the reverse inclusion holds as well. This has become important in Zelmanov's work [4], where expressions $[x_3, [x_1,x_2]^2,x_4]$ play a crucial role and one wants to know that if these vanish for all x_3, x_4 (i.e. $[x_1,x_2]^2$ is middle-nuclear) then $[x_1,x_2]^2$ is actually central.

We restrain our quadratic sympathies and work entirely with (nonunital) linear Jordan algebras J over a ring of scalars Φ containing $\frac{1}{2}$. Thus J has product xy satisfying the Jordan axioms

3. $xy = yx$, i.e. $[x,y] = 0$,
4. $(x^2y)x = x^2(yx)$, i.e. $[x^2,y,x] = 0$.

In addition to the left multiplication operator $L_x(z) = xz$, the U-operator

5. $U(x) = (2L_x^2 - L_{x^2})(x)$

plays an important role even in the linear theory. It satisfies the identity

Received by the editors August 28, 1981.
1980 Mathematics Subject Classification. Primary 17C10.
1Research partially supported by NSF Grant MCS-80-02319
2The second author wishes to thank the Department of Pure Mathematics at the University of Sydney for its hospitality, and to thank Dr. K. G. Choo for his assistance and encouragement.

© 1982 American Mathematical Society
0002-9939/81/0000-0177/01.75
The inner derivations $D_{x,y}$ are defined by
\[(9)\ D_{x,y}(z) = [L_x, L_y](z) = -[x, z, y];
\]
any derivation D satisfies
\[(10)\ D(U_{x,y}) = U_{D(x), y} + U_{x, D(y)}, \quad [D, D_{x,y}] = D_{D(x), y} + D_{x, D(y)}.
\]
A Jordan algebra is semiprime if it contains no trivial ideals $B \ (UBB = 0)$ and is D-semiprime if it contains no nonzero trivial ideals B invariant under all derivations.

THEOREM. The middle nucleus and center coincide, $N_m(J) = C(J)$, for any D-semiprime linear Jordan algebra J.

PROOF. We must show $n \in N_m(J) \Rightarrow n \in N(J)$, i.e. $[J, n, J] = 0 \Rightarrow [n, J, J] = 0$. Following Albert [1] we introduce an ideal
\[(11)\ B = [n, J, J]
\]
which measures the failure of n to lie in $N(J)$. Here B is spanned by all associators $[n, x, y]$ for $x, y \in J$, where
\[(12)\ [n, x, y] = [n, y, x]
\]
since $0 = [n, x, y] + [x, y, n] + [y, n, x] = [n, x, y] - [n, y, x] + 0$ by (4), (3), and the definition of $n \in N_m(J)$. Thus $[n, x, y] = \frac{1}{2}([n, x, y] + [n, y, x])$ results from linearizing $[n, x, x]$, so
\[(13)\ B \text{ is spanned by all } [n, x, x] \text{ for } x \in J.
\]
To see B is actually an ideal, note JB is spanned by all $y[n, x, x] = -x[n, y, x] + [n, xy, x]$ (by (1), (9)) = $-x[n, y, x] + [n, xy, x]$ (by (12)) = $-\frac{1}{2}[n, x^2, y] + [n, xy, x]$ (by (1)) $\in [n, J, J] = B$.

Now by (13), $[n, B, J]$ is spanned by elements $[n, [n, x, x], y] = -[[n, x, x], y, n] - [y, n, [n, x, x]]$ (by (4)) = $D_n D_{n,x}(y) + 0$ (by (9)) = $[[D_n, x], D_{n,x}] - D_{D_{n}, x}(n) x]}(y)$ (by (10)) = 0 (since $D_{J,J}(n) = 0$), so
\[(14)\ [n, B, J] = 0.
\]
Then $0 = [n, B, J] \supset [n, UB, J] = U[n, B, J] + UB[n, J, J]$ (by (9), (10)) = $0 + UB B$ implies $UB B = 0$. If J is semiprime then $B = [n, J, J] = 0$ by (11) and $n \in N(J)$.

If J is merely D-semiprime we must work a little harder. We claim $C = [N_m(J), J, J] = \sum[n, J, J]$ is a trivial D-invariant ideal. C is an ideal since each $[n, J, J]$ is by (11), and it is D-invariant by (2) and the fact that $N_m(J)$ is D-invariant. As in (14) we have
\[(14')\ [n, C, J] = 0
\]
for any $n \in N_m(J)$ since by (12) this is spanned by all $[n, [n', x, x], y] = [[n, n', y], \ x, x] + [n', [n, x, y], x] + [n', x, [n, x, y]]$ (by (9), (2)) = $0 + 2[n', [n, x, y], x]$ (by (12) and $n' \in N_m(J)$) = $2[n', [n, x, y]] x = 2n' \{n, [x, y] x\}$ (by (12)) = $[n, x^2, y] - [n, n'y, x^2]$ (by (1), (9)) = 0 (by (12)). Then $0 = [n, C, J] \supset [n, CJ, J] = [n, C, J] J + C[n, J, J]$ (by (1)) = $0 + C[n, J, J]$ (by (14')); this holds for all $n \in N_m(J)$, so $0 = CC$ and C is trivial as well as D-invariant. If J is D-semiprime this forces $C = 0$, so $[N_m(J), J, J] = 0$ and $N_m(J) \subset N(J)$. □
It is easy to give examples to show that the semiprimeness hypothesis is needed. If we take \(J = F/K \) for \(F \) the free Jordan algebra on \(x, y, K \) the ideal generated by all \([a, y, b]\) for \(a, b \in F \), then \(n = y + K \) is middle-nuclear in \(J \) by construction but is not central: \([n, J, J] \neq 0 \) since \([y, x, x] \notin K \). \(K \) is graded, vanishing in total degrees < 3, and in degree \(x^2y^1 \) it is spanned by \([x, y, x] = 0 \), so \([y, x, x] \notin K \).

We can also easily give special examples \(J = A^+ \) for \(A \) an associative algebra. Here \(n \in N_m(J) \iff \{[n, J], J\} = 0 \) and \(n \in N_i(J) \iff \{[n, J, J] = 0 \). If \(A = \Phi E_{11} + \Phi E_{12} + \Phi E_{22} \) consists of all upper triangular \(2 \times 2 \) matrices over \(\Phi \), then \([J, J] = \Phi E_{12} \), so \(n = E_{12} \) lies in \(N_m(J) \), yet \(n \notin N_i(J) \) since \([n, E_{11}], E_{11} = -[E_{12}, E_{11}] = E_{12} \neq 0 \). Note that \(n \) falls in the trivial ideal \(B = \Phi E_{12} \).

Another example is the algebra \(J(Q, c) \) determined by a quadratic form \(Q \); here \(n \in N_m(J) \iff \{[n, J, J] = 0 \). If \(A = E_1 + E_i2 + E_2^2 \) consists of all upper triangular \(2 \times 2 \) matrices over \(E \), then \([J, J] = E_i2 \), so \(n = E_i2 \) lies in \(N_m(J) \), yet \(n \notin N_0(J) \) since \([n, E_i2], E_{i2} = -[E_i2, E_{i2}] = E_{i2} \neq 0 \). Note that \(n \) falls in the trivial ideal \(B = \Phi E_{12} \).

Without reference to middle nuclei we can establish

Theorem. If \(J \) is a semiprime linear Jordan algebra then \(C(I) \subset C(J) \) for any ideal \(I < J \). More generally, \(C(J) \subset C(J) \) as soon as \(J < J \) and \(J \) contains no trivial ideals of \(J \) invariant under all derivations of \(J \) which map \(J \) into itself.

Proof. The first assertion follows from the second, since by a result of Slin'ko [4] if \(J \) is semiprime so is any \(I < J \). Assume \(J \) is \(D \)-semiprime in \(J \) in the above sense; for convenience we may assume that \(J \) is unital. We must show that if \(c \in C(J) \) then \(c \in C(J) = N_t(J) \), i.e. \([c, J, J] = 0 \).

All the derived ideals \(J^{(n)} \) (where \(J^{(0)} = J, J^{(n+1)} = U_{J^{(n)}} J^{(n)} \) are invariant under the indicated derivations and remain ideals in \(J \), as are their annihilators \(J^{(n)} \) (if \(B < J \) is invariant so is \(B\perp = \{z \in J \{z, B, J\} = 0 \}, and \(B\perp < J \) since \(\{z, B, J\} \in J\{z, B, J\} \subset J\{z, B, J\} = 0 \)).

Moreover, \(B = J \cap J^{(n)} \) are solvable: \(B^{(n)} \subset J^{(n)} \cap J^{(n)} \perp, B^{(n+1)} = 0 \). If \(J \) contains no trivial invariant ideals then it contains no solvable invariant ideals of \(J \), so \(B = 0 \):

\[
\text{(15) if } J \text{ is } D \text{-semiprime in } J \text{ then } J \cap J^{(n)} \perp = 0.
\]

If \(D(J^{(n)}) = 0 \) then \(D(J) \subset J^{(n+1)} \perp \) since \(D(J), J^{(n+1)}, J \subset \{D(J^{(n)}), J^{(n)}\} \) (because \(\{d, U_{x,y}, \tilde{a}\} = \{d, x, \{y, x, \tilde{a}\} = \{d, U_{\tilde{x}, \tilde{a}}, y\} \) where \(x, y \in J^{(n)} < J \) = \(D(\{J, J^{(n)}\}, J^{(n)})\) = \(\{J, J^{(n)}\}, D(J^{(n)})\) = \(J, J^{(n)}\), \(D(J^{(n)})\) = 0 (because \(J^{(n)} < J \), \(D(J^{(n)}) = 0 \), so from (15) we see

\[
\text{(16) if } J \text{ is } D \text{-semiprime in } J \text{ then } D(J^{(n)}) = 0 \Rightarrow D(J) = 0
\]

for any derivation of \(J \) into \(J \).

In particular, for \(D = D_{c,J} \) as in (9) we see \([c, J, J] = 0 \) (by \(c \in N_i(J) \)) implies \([c, J, J] = 0 \), hence for \(D = D_{c,J} \) we see \([c, J^2, J] = -[J^2, J, c] = [J, c, J^2] \) (by (4)) \(\subset [c, J, J^2] + [J, c, J^2] + [J, J^2] \) (by (3) and linearized (6)) \(\subset [c, J, J] + [J, c, J] \) (by \(J < J \) = 0 (by the above and \(c \in N_m(J) \)) implies \([c, J, J] = 0 \) as desired. \(\square \)
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VIRGINIA, CHARLOTTESVILLE, VIRGINIA 22903

SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITI SAIONS MALAYSIA, PENANG, MALAYSIA