The global dimension of FBN rings with enough clans
HTML articles powered by AMS MathViewer
- by Robert F. Damiano
- Proc. Amer. Math. Soc. 86 (1982), 25-28
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663859-8
- PDF | Request permission
Abstract:
For an FBN ring $R$, a classical set of prime ideals $\left \{ {{P_1}, \ldots ,{P_n}} \right \}$ is one for which the semiprime ideal $N = \cap _{i = 1}^n{P_i}$ satisfies the Artin-Rees property. A minimal classical set is called a clan. We say an FBN ring $R$ has enough clans if each prime ideal $P$ is an element of a clan. In this paper, we show that for such rings the Krull dimension is less than or equal to the global dimension.References
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York-Heidelberg, 1974. MR 0417223
- Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28. MR 153708, DOI 10.1007/BF01112819
- M. Boratyński, A change of rings theorem and the Artin-Rees property, Proc. Amer. Math. Soc. 53 (1975), no. 2, 307–310. MR 401840, DOI 10.1090/S0002-9939-1975-0401840-0
- Robert F. Damiano and Zoltán Papp, On consequences of stability, Comm. Algebra 9 (1981), no. 7, 747–764. MR 609221, DOI 10.1080/00927878108822616 —, Stable rings with finite global dimension, Hudson Symposium on Recent Advances in Non-Commutative Ring Theory at Plattsburgh, New York, Springer-Verlag, Berlin and New York.
- Arun Vinayak Jategaonkar, Injective modules and localization in noncommutative Noetherian rings, Trans. Amer. Math. Soc. 190 (1974), 109–123. MR 349727, DOI 10.1090/S0002-9947-1974-0349727-X
- Arun Vinayak Jategaonkar, Relative Krull dimension and prime ideals in right Noetherian rings, Comm. Algebra 2 (1974), 429–468. MR 357494, DOI 10.1080/00927877408822020
- S. Jøndrup, Homological dimensions of some P.I. rings, Comm. Algebra 8 (1980), no. 7, 685–696. MR 561548, DOI 10.1080/00927878008822483
- Bruno J. Müller, Localization in fully bounded Noetherian rings, Pacific J. Math. 67 (1976), no. 1, 233–245. MR 427351 —, Localization of non-commutative noetherian rings at semiprime ideals, Lecture notes, McMaster Univ., 1975. R. Resco, L. Small and J. T. Stafford, Krull and global dimensions of semiprime noetherian $PI$-rings (preprint).
- Joseph J. Rotman, An introduction to homological algebra, Pure and Applied Mathematics, vol. 85, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 538169
- Jay Shapiro, $R$-sequences in fully bounded Noetherian rings, Comm. Algebra 7 (1979), no. 8, 819–831. MR 529495, DOI 10.1080/00927877908822377
- Bo Stenström, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975. An introduction to methods of ring theory. MR 0389953
- D. Ž. Djoković, Epimorphisms of modules which must be isomorphisms, Canad. Math. Bull. 16 (1973), 513–515. MR 346014, DOI 10.4153/CMB-1973-083-0
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 25-28
- MSC: Primary 16A60; Secondary 16A33
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663859-8
- MathSciNet review: 663859