On Littlewood’s conjecture for univalent functions
HTML articles powered by AMS MathViewer
- by D. H. Hamilton
- Proc. Amer. Math. Soc. 86 (1982), 32-36
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663861-6
- PDF | Request permission
Abstract:
The uniform asymptotic theory of functionals on $S$ is investigated. We prove that Littlewood’s conjecture is equivalent to the asymptotic Bieberbach conjecture of Hayman.References
- Enrico Bombieri, On functions which are regular and univalent in a half-plane, Proc. London Math. Soc. (3) 14a (1965), 47–50. MR 185108, DOI 10.1112/plms/s3-14A.1.47 —, Two remarks on univalent functions, Conference on Univalent Functions (Ann Arbor, Michigan, 1980). J. Brown and D. H. Hamilton, Quantitative versions of the Hayman asymptotic theorem (to appear).
- Carl H. Fitzgerald, Quadratic inequalities and coefficient estimates for schlicht functions, Arch. Rational Mech. Anal. 46 (1972), 356–368. MR 335777, DOI 10.1007/BF00281102 —, Univalent functions with large late coefficients (to appear).
- David H. Hamilton, The equivalence of two weak Bieberbach conjectures, Math. Z. 181 (1982), no. 2, 191–195. MR 674271, DOI 10.1007/BF01215018
- D. H. Hamilton, The dispersion of the coefficients of univalent functions, Trans. Amer. Math. Soc. 276 (1983), no. 1, 323–333. MR 684512, DOI 10.1090/S0002-9947-1983-0684512-6
- W. K. Hayman, Multivalent functions, Cambridge Tracts in Mathematics and Mathematical Physics, No. 48, Cambridge University Press, Cambridge, 1958. MR 0108586
- W. K. Hayman, Bounds for the large coefficients of univalent functions, Ann. Acad. Sci. Fenn. Ser. A I 250/13 (1958), 13. MR 0096810 J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. (2) 23 (1925), 481-519.
- Zeev Nehari, On the coefficients of univalent functions, Proc. Amer. Math. Soc. 8 (1957), 291–293. MR 83569, DOI 10.1090/S0002-9939-1957-0083569-3
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 32-36
- MSC: Primary 30C50; Secondary 30C55
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663861-6
- MathSciNet review: 663861