On the Hahn-Banach extension property
HTML articles powered by AMS MathViewer
- by Jonathan M. Borwein
- Proc. Amer. Math. Soc. 86 (1982), 42-46
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663863-X
- PDF | Request permission
Abstract:
A self-contained and brief proof is given of the equivalence of the Hahn-Banach extension property (HB) and the conditional order completeness of the range space (LUB). Various other equivalences are discussed.References
- William E. Bonnice and Robert J. Silverman, The Hahn-Banach theorem for finite dimensional spaces, Trans. Amer. Math. Soc. 121 (1966), 210–222. MR 185412, DOI 10.1090/S0002-9947-1966-0185412-0
- W. E. Bonnice and R. J. Silverman, The Hahn-Banach extension and the least upper bound properties are equivalent, Proc. Amer. Math. Soc. 18 (1967), 843–849. MR 215050, DOI 10.1090/S0002-9939-1967-0215050-9
- J. M. Borwein, A Lagrange multiplier theorem and a sandwich theorem for convex relations, Math. Scand. 48 (1981), no. 2, 189–204. MR 631335, DOI 10.7146/math.scand.a-11911
- Mahlon M. Day, Normed linear spaces, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag, New York-Heidelberg, 1973. MR 0344849
- Karl-Heinz Elster and Reinhard Nehse, Konjugierte Operatoren und Subdifferentiale, Math. Operationsforsch. Statist. 6 (1975), no. 4, 641–657 (German, with English and Russian summaries). MR 388035, DOI 10.1080/02331937508842279
- Karl-Heinz Elster and Reinhard Nehse, Necessary and sufficient conditions for order-completeness of partially ordered vector spaces, Math. Nachr. 81 (1978), 301–311. MR 493244, DOI 10.1002/mana.19780810116
- M. M. Fel′dman, Sufficient conditions for the existence of supporting operators for sublinear operators, Sibirsk. Mat. Ž. 16 (1975), 132–138, 197 (Russian). MR 0380344
- A. D. Ioffe, Nonsmooth analysis: differential calculus of nondifferentiable mappings, Trans. Amer. Math. Soc. 266 (1981), no. 1, 1–56. MR 613784, DOI 10.1090/S0002-9947-1981-0613784-7
- A. D. Ioffe, A new proof of the equivalence of the Hahn-Banach extension and the least upper bound properties, Proc. Amer. Math. Soc. 82 (1981), no. 3, 385–389. MR 612725, DOI 10.1090/S0002-9939-1981-0612725-1
- David G. Luenberger, Optimization by vector space methods, John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238472
- Anthony L. Peressini, Ordered topological vector spaces, Harper & Row, Publishers, New York-London, 1967. MR 0227731
- R. J. Silverman and Ti Yen, The Hahn-Banach theorem and the least upper bound property, Trans. Amer. Math. Soc. 90 (1959), 523–526. MR 102725, DOI 10.1090/S0002-9947-1959-0102725-5
- Ting-On To, The equivalence of the least upper bound property and the Hahn-Banach extension property in ordered linear spaces, Proc. Amer. Math. Soc. 30 (1971), 287–295. MR 417746, DOI 10.1090/S0002-9939-1971-0417746-3
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 42-46
- MSC: Primary 46A40; Secondary 06F20
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663863-X
- MathSciNet review: 663863