Certain Schur-Hadamard multipliers in the spaces $C_{p}$
HTML articles powered by AMS MathViewer
- by Jonathan Arazy
- Proc. Amer. Math. Soc. 86 (1982), 59-64
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663866-5
- PDF | Request permission
Abstract:
Let $f$ be a continuously differentiable function on $[ - 1,1]$ satisfying $\left | {f’(t)} \right | \leqslant C{\left | t \right |^\alpha }$ for some $0 < C$, $\alpha < \infty$ and all $- 1 \leqslant t \leqslant 1$, and let $\lambda = ({\lambda _i}) \in {l_r}$ satisfy $- 1 \leqslant {\lambda _i} \leqslant 1$ for all $i$. Then \[ {a_{f,\lambda }} = \left ( {\frac {{f({\lambda _i}) - f({\lambda _j})}} {{{\lambda _i} - {\lambda _j}}}} \right )\] is a Schur-Hadamard multiplier from ${C_{{p_1}}}$ into ${C_{{p_2}}}$ for all ${p_1}$, ${p_2}$ satisfying $1 \leqslant {p_2} \leqslant 2 \leqslant {p_1} \leqslant \infty$ and $p_2^{ - 1} \leqslant p_1^{ - 1} + \alpha /r$.References
- M. S. Birman and M. Z. Solomjak, Stieltjes double operator integrals, Soviet Math. Dokl. 6 (1965), 1567-1571.
—, Stieltjes double operator integrals and multiplier problems, Soviet Math. Dokl. 7 (1966), 1618-1621.
—, Remarks on the spectral shift function, J. Soviet Math. 3 (1975), 408-419.
- M. Š. Birman and M. Z. Solomjak, Estimates for the singular numbers of integral operators, Uspehi Mat. Nauk 32 (1977), no. 1(193), 17–84, 271 (Russian). MR 0438186 Ju. L. Daleckii and S. G. Krein, Integration and differentation of functions of hermitian operators and applications to the theory of perturbations, Amer. Math. Soc. Transl. (2) 47 (1965), 1-30. Yu. B. Farforovskaya, Example of a Lipschitz function of self-adjoint operators that gives a nonnuclear increment under a nuclear perturbation. J. Soviet Math. 4 (1975), 426-433. —, An estimate of the difference $f(B) - f(A)$ in the classes ${\gamma _p}$, J. Soviet Math. 8 (1977), 146-148. —, An estimate of the norm $\left \| {f(B) - f(A)} \right \|$ for self-adjoint operators $A$ and $B$, J. Soviet Math. 14 (1980), 1133-1149.
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR 0246142, DOI 10.1090/mmono/018
- I. C. Gohberg and M. G. Kreĭn, Theory and applications of Volterra operators in Hilbert space, Translations of Mathematical Monographs, Vol. 24, American Mathematical Society, Providence, R.I., 1970. Translated from the Russian by A. Feinstein. MR 0264447
- S. Kwapień and A. Pełczyński, The main triangle projection in matrix spaces and its applications, Studia Math. 34 (1970), 43–68. MR 270118, DOI 10.4064/sm-34-1-43-67
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 59-64
- MSC: Primary 47D15; Secondary 46B99, 47B10
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663866-5
- MathSciNet review: 663866