Measure-theoretic quantifiers and Haar measure
HTML articles powered by AMS MathViewer
- by Russell Lyons
- Proc. Amer. Math. Soc. 86 (1982), 67-70
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663868-9
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 91 (1984), 329-330.
Abstract:
Measure-theoretic quantifiers are introduced as convenient notation and to facilitate certain applications of Fubini’s theorem. They are used to prove the uniqueness of Haar measure and to give some conditions involving translation which imply absolute continuity of another measure.References
- D. A. Lind, Convolutions and absolute continuity, Proc. Amer. Math. Soc. 39 (1973), 347–348. MR 320257, DOI 10.1090/S0002-9939-1973-0320257-9
- Walter Rudin, Measure algebras on abelian groups, Bull. Amer. Math. Soc. 65 (1959), 227–247. MR 108689, DOI 10.1090/S0002-9904-1959-10322-0 Stanislaw Saks, Theory of the integral, 2nd rev. ed., English transl., Stechert, New York, 1937, pp. 91-92.
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 67-70
- MSC: Primary 43A05; Secondary 03C80, 28C10
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663868-9
- MathSciNet review: 663868